These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 32230750)
1. Full Parametric Study of the Influence of Ionomer Content, Catalyst Loading and Catalyst Type on Oxygen and Ion Transport in PEM Fuel Cell Catalyst Layers. Alink R; Singh R; Schneider P; Christmann K; Schall J; Keding R; Zamel N Molecules; 2020 Mar; 25(7):. PubMed ID: 32230750 [TBL] [Abstract][Full Text] [Related]
2. Transport and Electrochemical Interface Properties of Ionomers in Low-Pt Loading Catalyst Layers: Effect of Ionomer Equivalent Weight and Relative Humidity. Poojary S; Islam MN; Shrivastava UN; Roberts EPL; Karan K Molecules; 2020 Jul; 25(15):. PubMed ID: 32722653 [TBL] [Abstract][Full Text] [Related]
3. Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. Yasuda K; Taniguchi A; Akita T; Ioroi T; Siroma Z Phys Chem Chem Phys; 2006 Feb; 8(6):746-52. PubMed ID: 16482315 [TBL] [Abstract][Full Text] [Related]
4. Using layer-by-layer assembly of polyaniline fibers in the fast preparation of high performance fuel cell nanostructured membrane electrodes. Michel M; Ettingshausen F; Scheiba F; Wolz A; Roth C Phys Chem Chem Phys; 2008 Jul; 10(25):3796-801. PubMed ID: 18563240 [TBL] [Abstract][Full Text] [Related]
5. PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity. Soboleva T; Malek K; Xie Z; Navessin T; Holdcroft S ACS Appl Mater Interfaces; 2011 Jun; 3(6):1827-37. PubMed ID: 21574609 [TBL] [Abstract][Full Text] [Related]
6. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy. Feindel KW; Bergens SH; Wasylishen RE Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498 [TBL] [Abstract][Full Text] [Related]
7. Catalytic synthesis of neutral hydrogen peroxide at a CoN2Cx cathode of a polymer electrolyte membrane fuel cell (PEMFC). Yamanaka I; Tazawa S; Murayama T; Iwasaki T; Takenaka S ChemSusChem; 2010; 3(1):59-62. PubMed ID: 19918834 [No Abstract] [Full Text] [Related]
8. Controlling the Distribution of Perfluorinated Sulfonic Acid Ionomer with Elastin-like Polypeptide. Pramounmat N; Loney CN; Kim C; Wiles L; Ayers KE; Kusoglu A; Renner JN ACS Appl Mater Interfaces; 2019 Nov; 11(46):43649-43658. PubMed ID: 31644259 [TBL] [Abstract][Full Text] [Related]
9. Cathode Catalyst Layer Design in PEM Water Electrolysis toward Reduced Pt Loading and Hydrogen Crossover. Zhang Z; Baudy A; Testino A; Gubler L ACS Appl Mater Interfaces; 2024 Apr; 16(18):23265-77. PubMed ID: 38652166 [TBL] [Abstract][Full Text] [Related]
10. Effects of Ink Formulation on Construction of Catalyst Layers for High-Performance Polymer Electrolyte Membrane Fuel Cells. Gong Q; Li C; Liu Y; Ilavsky J; Guo F; Cheng X; Xie J ACS Appl Mater Interfaces; 2021 Aug; 13(31):37004-37013. PubMed ID: 34323080 [TBL] [Abstract][Full Text] [Related]
12. Modulated ionomer distribution in the catalyst layer of polymer electrolyte membrane fuel cells for high temperature operation. Choo MJ; Oh KH; Kim HT; Park JK ChemSusChem; 2014 Aug; 7(8):2335-41. PubMed ID: 24777945 [TBL] [Abstract][Full Text] [Related]
13. Optimization of nafion ionomer content using synthesized Pt/carbon nanofibers catalyst in polymer electrolyte membrane fuel cell. Jung JH; Cha MS; Kim JB J Nanosci Nanotechnol; 2012 Jul; 12(7):5412-7. PubMed ID: 22966581 [TBL] [Abstract][Full Text] [Related]
14. Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells. Uchida M; Park YC; Kakinuma K; Yano H; Tryk DA; Kamino T; Uchida H; Watanabe M Phys Chem Chem Phys; 2013 Jul; 15(27):11236-47. PubMed ID: 23715296 [TBL] [Abstract][Full Text] [Related]
15. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition. Chen S; Wei Z; Li H; Li L Chem Commun (Camb); 2010 Dec; 46(46):8782-4. PubMed ID: 20963211 [TBL] [Abstract][Full Text] [Related]
16. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells. Kim JH; Yu JS Phys Chem Chem Phys; 2010 Dec; 12(46):15301-8. PubMed ID: 20938509 [TBL] [Abstract][Full Text] [Related]
17. Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte Membrane Fuel Cells in Liquid Half- and Full-Cells. Ahn CY; Park JE; Kim S; Kim OH; Hwang W; Her M; Kang SY; Park S; Kwon OJ; Park HS; Cho YH; Sung YE Chem Rev; 2021 Dec; 121(24):15075-15140. PubMed ID: 34677946 [TBL] [Abstract][Full Text] [Related]
18. Development of Porous Pt Electrocatalysts for Oxygen Reduction and Evolution Reactions. Muto M; Nagayama M; Sasaki K; Hayashi A Molecules; 2020 May; 25(10):. PubMed ID: 32455721 [TBL] [Abstract][Full Text] [Related]
19. Designing fuel cell catalyst support for superior catalytic activity and low mass-transport resistance. Islam MN; Mansoor Basha AB; Kollath VO; Soleymani AP; Jankovic J; Karan K Nat Commun; 2022 Oct; 13(1):6157. PubMed ID: 36257992 [TBL] [Abstract][Full Text] [Related]
20. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells. Cui X; Shi J; Wang Y; Chen Y; Zhang L; Hua Z ChemSusChem; 2014 Jan; 7(1):135-45. PubMed ID: 24382829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]