These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 32230750)
21. Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster. Tymoczko J; Calle-Vallejo F; Schuhmann W; Bandarenka AS Nat Commun; 2016 Mar; 7():10990. PubMed ID: 26960565 [TBL] [Abstract][Full Text] [Related]
22. Preparation of Pt-Re/Vulcan carbon nanocomposites using a single-source molecular precursor and relative performance as a direct methanol fuel cell electrooxidation catalyst. Anderson AD; Deluga GA; Moore JT; Vergne MJ; Hercules DM; Kenik EA; Lukehart CM J Nanosci Nanotechnol; 2004 Sep; 4(7):809-16. PubMed ID: 15570964 [TBL] [Abstract][Full Text] [Related]
24. Estimation of electrode ionomer oxygen permeability and ionomer-phase oxygen transport resistance in polymer electrolyte fuel cells. Sambandam S; Parrondo J; Ramani V Phys Chem Chem Phys; 2013 Sep; 15(36):14994-5002. PubMed ID: 23912796 [TBL] [Abstract][Full Text] [Related]
25. Dictating Pt-Based Electrocatalyst Performance in Polymer Electrolyte Fuel Cells, from Formulation to Application. Van Cleve T; Khandavalli S; Chowdhury A; Medina S; Pylypenko S; Wang M; More KL; Kariuki N; Myers DJ; Weber AZ; Mauger SA; Ulsh M; Neyerlin KC ACS Appl Mater Interfaces; 2019 Dec; 11(50):46953-46964. PubMed ID: 31742376 [TBL] [Abstract][Full Text] [Related]
26. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. Cheng S; Liu H; Logan BE Environ Sci Technol; 2006 Jan; 40(1):364-9. PubMed ID: 16433373 [TBL] [Abstract][Full Text] [Related]
27. From bio-mineralisation to fuel cells: biomanufacture of Pt and Pd nanocrystals for fuel cell electrode catalyst. Yong P; Paterson-Beedle M; Mikheenko IP; Macaskie LE Biotechnol Lett; 2007 Apr; 29(4):539-44. PubMed ID: 17295088 [TBL] [Abstract][Full Text] [Related]
28. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Ott S; Orfanidi A; Schmies H; Anke B; Nong HN; Hübner J; Gernert U; Gliech M; Lerch M; Strasser P Nat Mater; 2020 Jan; 19(1):77-85. PubMed ID: 31570820 [TBL] [Abstract][Full Text] [Related]
29. Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode. Sherrell PC; Zhang W; Zhao J; Wallace GG; Chen J; Minett AI ChemSusChem; 2012 Jul; 5(7):1233-40. PubMed ID: 22696244 [TBL] [Abstract][Full Text] [Related]
30. Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes. Schneider A; Colmenares L; Seidel YE; Jusys Z; Wickman B; Kasemo B; Behm RJ Phys Chem Chem Phys; 2008 Apr; 10(14):1931-43. PubMed ID: 18368186 [TBL] [Abstract][Full Text] [Related]
31. Development of Hydrogen-Oxygen Fuel Cells Based on Anion-Exchange Electrolytes and Catalysts with Reduced Platinum Content. Korchagin O; Bogdanovskaya V; Vernigor I; Radina M; Stenina I; Yaroslavtsev A Membranes (Basel); 2023 Jul; 13(7):. PubMed ID: 37505035 [TBL] [Abstract][Full Text] [Related]
32. Equation Elucidating the Catalyst-Layer Proton Conductivity in a Polymer Electrolyte Fuel Cell Based on the Ionomer Distribution Determined Using Small-Angle Neutron Scattering. Harada M; Kadoura H; Takata SI; Iwase H; Kajiya S; Suzuki T; Hasegawa N; Shinohara A; Kato S ACS Appl Mater Interfaces; 2023 Sep; 15(36):42594-42602. PubMed ID: 37650483 [TBL] [Abstract][Full Text] [Related]
34. Geoelectrodes and Fuel Cells for Simulating Hydrothermal Vent Environments. Barge LM; Krause FC; Jones JP; Billings K; Sobron P Astrobiology; 2018 Sep; 18(9):1147-1158. PubMed ID: 30106308 [TBL] [Abstract][Full Text] [Related]
35. Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells. Li D; Lv H; Kang Y; Markovic NM; Stamenkovic VR Annu Rev Chem Biomol Eng; 2016 Jun; 7():509-32. PubMed ID: 27070766 [TBL] [Abstract][Full Text] [Related]
36. The development of catalytic performance by coating Pt-Ni on CMI7000 membrane as a cathode of a microbial fuel cell. Cetinkaya AY; Ozdemir OK; Koroglu EO; Hasimoglu A; Ozkaya B Bioresour Technol; 2015 Nov; 195():188-93. PubMed ID: 26116447 [TBL] [Abstract][Full Text] [Related]
37. High Power Density Platinum Group Metal-free Cathodes for Polymer Electrolyte Fuel Cells. Uddin A; Dunsmore L; Zhang H; Hu L; Wu G; Litster S ACS Appl Mater Interfaces; 2020 Jan; 12(2):2216-2224. PubMed ID: 31850728 [TBL] [Abstract][Full Text] [Related]
38. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells. Long NV; Thi CM; Yong Y; Nogami M; Ohtaki M J Nanosci Nanotechnol; 2013 Jul; 13(7):4799-824. PubMed ID: 23901503 [TBL] [Abstract][Full Text] [Related]
39. An ultrathin self-humidifying membrane for PEM fuel cell application: fabrication, characterization, and experimental analysis. Zhu X; Zhang H; Zhang Y; Liang Y; Wang X; Yi B J Phys Chem B; 2006 Jul; 110(29):14240-8. PubMed ID: 16854127 [TBL] [Abstract][Full Text] [Related]
40. Zoom in Catalyst/Ionomer Interface in Polymer Electrolyte Membrane Fuel Cell Electrodes: Impact of Catalyst/Ionomer Dispersion Media/Solvent. Sharma R; Andersen SM ACS Appl Mater Interfaces; 2018 Nov; 10(44):38125-38133. PubMed ID: 30360111 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]