BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32230783)

  • 1. 3D Hydrodynamic Focusing in Microscale Optofluidic Channels Formed with a Single Sacrificial Layer.
    Hamilton ES; Ganjalizadeh V; Wright JG; Schmidt H; Hawkins AR
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32230783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D hydrodynamic focusing in microscale channels formed with two photoresist layers.
    Hamilton ES; Ganjalizadeh V; Wright JG; Pitt WG; Schmidt H; Hawkins AR
    Microfluid Nanofluidics; 2019 Nov; 23(11):. PubMed ID: 35664662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance Comparison of Flow-Through Optofluidic Biosensor Designs.
    Wright JG; Amin MN; Schmidt H; Hawkins AR
    Biosensors (Basel); 2021 Jul; 11(7):. PubMed ID: 34356697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic Waveguides in Teflon AF-Coated PDMS Microfluidic Channels.
    Cho SH; Godin J; Lo YH
    IEEE Photonics Technol Lett; 2009 Aug; 21(15):1057-1059. PubMed ID: 20729984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Detection of Single Viruses On-Chip via Hydrodynamic Focusing.
    Black JA; Hamilton E; Hueros RAR; Parks JW; Hawkins AR; Schmidt H
    IEEE J Sel Top Quantum Electron; 2019; 25(1):. PubMed ID: 30686911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a microflow cytometer with an integrated three-dimensional optofluidic lens system.
    Rosenauer M; Vellekoop MJ
    Biomicrofluidics; 2010 Dec; 4(4):43005. PubMed ID: 21267437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic Particle Manipulation Platform with Nanomembrane.
    Walker ZJ; Wells T; Belliston E; Romney S; Walker SB; Sampad MJN; Saiduzzaman SM; Losakul R; Schmidt H; Hawkins AR
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic self-focusing in a parallel microfluidic device through cross-filtration.
    Torino S; Iodice M; Rendina I; Coppola G; Schonbrun E
    Biomicrofluidics; 2015 Nov; 9(6):064107. PubMed ID: 26634015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid optofluidic integration.
    Parks JW; Cai H; Zempoaltecatl L; Yuzvinsky TD; Leake K; Hawkins AR; Schmidt H
    Lab Chip; 2013 Oct; 13(20):4118-23. PubMed ID: 23969694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacture of Three-Dimensional Optofluidic Spot-Size Converters in Fused Silica Using Hybrid Laser Microfabrication.
    Yu J; Xu J; Zhang A; Song Y; Qi J; Dong Q; Chen J; Liu Z; Chen W; Cheng Y
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating.
    Hanada Y; Sugioka K; Midorikawa K
    Lab Chip; 2012 Oct; 12(19):3688-93. PubMed ID: 22814524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device.
    Watts BR; Zhang Z; Xu CQ; Cao X; Lin M
    Biomed Opt Express; 2012 Nov; 3(11):2784-93. PubMed ID: 23162718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated, multiparametric flow cytometry chip using "microfluidic drifting" based three-dimensional hydrodynamic focusing.
    Mao X; Nawaz AA; Lin SC; Lapsley MI; Zhao Y; McCoy JP; El-Deiry WS; Huang TJ
    Biomicrofluidics; 2012 Jun; 6(2):24113-241139. PubMed ID: 22567082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro flow cytometer with self-aligned 3D hydrodynamic focusing.
    Testa G; Persichetti G; Bernini R
    Biomed Opt Express; 2015 Jan; 6(1):54-62. PubMed ID: 25657874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels.
    Paiè P; Bragheri F; Vazquez RM; Osellame R
    Lab Chip; 2014 Jun; 14(11):1826-33. PubMed ID: 24740611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monolithic integration of microfluidic channels, liquid-core waveguides, and silica waveguides on silicon.
    Dumais P; Callender CL; Ledderhof CJ; Noad JP
    Appl Opt; 2006 Dec; 45(36):9182-90. PubMed ID: 17151758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.