These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32230801)

  • 1. Dry Generation of CeO
    Cappellini F; Di Bucchianico S; Karri V; Latvala S; Malmlöf M; Kippler M; Elihn K; Hedberg J; Odnevall Wallinder I; Gerde P; Karlsson HL
    Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32230801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silica nanoparticles are less toxic to human lung cells when deposited at the air-liquid interface compared to conventional submerged exposure.
    Panas A; Comouth A; Saathoff H; Leisner T; Al-Rawi M; Simon M; Seemann G; Dössel O; Mülhopt S; Paur HR; Fritsch-Decker S; Weiss C; Diabaté S
    Beilstein J Nanotechnol; 2014; 5():1590-1602. PubMed ID: 25247141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity assessment of CeO₂ and CuO nanoparticles at the air-liquid interface using bioinspired condensational particle growth.
    Tilly TB; Ward RX; Morea AF; Nelson MT; Robinson SE; Eiguren-Fernandez A; Lewis GS; Lednicky JA; Sabo-Attwood T; Hussain SM; Wu CY
    Hyg Environ Health Adv; 2023 Sep; 7():. PubMed ID: 37711680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches.
    Herzog F; Loza K; Balog S; Clift MJ; Epple M; Gehr P; Petri-Fink A; Rothen-Rutishauser B
    Beilstein J Nanotechnol; 2014; 5():1357-70. PubMed ID: 25247119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions.
    Loret T; Peyret E; Dubreuil M; Aguerre-Chariol O; Bressot C; le Bihan O; Amodeo T; Trouiller B; Braun A; Egles C; Lacroix G
    Part Fibre Toxicol; 2016 Nov; 13(1):58. PubMed ID: 27919268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air-Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects.
    Diabaté S; Armand L; Murugadoss S; Dilger M; Fritsch-Decker S; Schlager C; Béal D; Arnal ME; Biola-Clier M; Ambrose S; Mülhopt S; Paur HR; Lynch I; Valsami-Jones E; Carriere M; Weiss C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33383962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-culture of human alveolar epithelial (A549) and macrophage (THP-1) cells to study the potential toxicity of ambient PM
    Wang G; Zhang X; Liu X; Zheng J
    Toxicol Res (Camb); 2020 Sep; 9(5):636-651. PubMed ID: 33178424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of biological responses between submerged, pseudo-air-liquid interface, and air-liquid interface exposure of A549 and differentiated THP-1 co-cultures to combustion-derived particles.
    Kaur K; Mohammadpour R; Sturrock A; Ghandehari H; Reilly C; Paine R; Kelly KE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(7):540-551. PubMed ID: 35722658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative anti-inflammatory effect of curcumin at air-liquid interface and submerged conditions using lipopolysaccharide stimulated human lung epithelial A549 cells.
    Hu Y; Sheng Y; Ji X; Liu P; Tang L; Chen G; Chen G
    Pulm Pharmacol Ther; 2020 Aug; 63():101939. PubMed ID: 32861762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing α-Quartz-Induced Cytotoxicity and Interleukin-8 Release in Pulmonary Mono- and Co-Cultures Exposed under Submerged and Air-Liquid Interface Conditions.
    Friesen A; Fritsch-Decker S; Hufnagel M; Mülhopt S; Stapf D; Hartwig A; Weiss C
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicological effects of zinc oxide nanoparticle exposure: an
    Lovén K; Dobric J; Bölükbas DA; Kåredal M; Tas S; Rissler J; Wagner DE; Isaxon C
    Nanotoxicology; 2021 May; 15(4):494-510. PubMed ID: 33576698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL®Cloud cell exposure systems.
    Ding Y; Weindl P; Lenz AG; Mayer P; Krebs T; Schmid O
    Part Fibre Toxicol; 2020 Sep; 17(1):44. PubMed ID: 32938469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Expression Profiling of Mono- and Co-Culture Models of the Respiratory Tract Exposed to Crystalline Quartz under Submerged and Air-Liquid Interface Conditions.
    Friesen A; Fritsch-Decker S; Hufnagel M; Mülhopt S; Stapf D; Weiss C; Hartwig A
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles.
    Latvala S; Hedberg J; Möller L; Odnevall Wallinder I; Karlsson HL; Elihn K
    J Appl Toxicol; 2016 Oct; 36(10):1294-301. PubMed ID: 26935862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerosol exposure at air-liquid-interface (AE-ALI) in vitro toxicity system characterisation: Particle deposition and the importance of air control responses.
    Buckley A; Guo C; Laycock A; Cui X; Belinga-Desaunay-Nault MF; Valsami-Jones E; Leonard M; Smith R
    Toxicol In Vitro; 2024 Jul; 100():105889. PubMed ID: 38971396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric Optimization of an Air-Liquid Interface System for Flow-Through Inhalation Exposure to Nanoparticles: Assessing Dosimetry and Intracellular Uptake of CeO
    Leibrock LB; Jungnickel H; Tentschert J; Katz A; Toman B; Petersen EJ; Bierkandt FS; Singh AV; Laux P; Luch A
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient bioactive delivery of aerosolized drugs to human pulmonary epithelial cells cultured in air-liquid interface conditions.
    Lenz AG; Stoeger T; Cei D; Schmidmeir M; Semren N; Burgstaller G; Lentner B; Eickelberg O; Meiners S; Schmid O
    Am J Respir Cell Mol Biol; 2014 Oct; 51(4):526-35. PubMed ID: 24773184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of a panel of interleukin-8 reporter lung epithelial cell lines to monitor the pro-inflammatory response following zinc oxide nanoparticle exposure under different cell culture conditions.
    Stoehr LC; Endes C; Radauer-Preiml I; Boyles MS; Casals E; Balog S; Pesch M; Petri-Fink A; Rothen-Rutishauser B; Himly M; Clift MJ; Duschl A
    Part Fibre Toxicol; 2015 Sep; 12():29. PubMed ID: 26415698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of
    Wang Y; Adamcakova-Dodd A; Steines BR; Jing X; Salem AK; Thorne PS
    NanoImpact; 2020 Apr; 18():. PubMed ID: 32885098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: a comparison with conventional, submerged cell-culture conditions.
    Lenz AG; Karg E; Brendel E; Hinze-Heyn H; Maier KL; Eickelberg O; Stoeger T; Schmid O
    Biomed Res Int; 2013; 2013():652632. PubMed ID: 23484138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.