BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32230824)

  • 1. Comparative Genomics of
    Zhang Q; Zhang L; Ross P; Zhao J; Zhang H; Chen W
    Genes (Basel); 2020 Mar; 11(4):. PubMed ID: 32230824
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparative genomics of human Lactobacillus crispatus isolates reveals genes for glycosylation and glycogen degradation: implications for in vivo dominance of the vaginal microbiota.
    van der Veer C; Hertzberger RY; Bruisten SM; Tytgat HLP; Swanenburg J; de Kat Angelino-Bart A; Schuren F; Molenaar D; Reid G; de Vries H; Kort R
    Microbiome; 2019 Mar; 7(1):49. PubMed ID: 30925932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic Comparisons of Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological Drivers of Community Composition in the Vagina.
    France MT; Mendes-Soares H; Forney LJ
    Appl Environ Microbiol; 2016 Dec; 82(24):7063-7073. PubMed ID: 27694231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The core genome evolution of Lactobacillus crispatus as a driving force for niche competition in the human vaginal tract.
    Tarracchini C; Argentini C; Alessandri G; Lugli GA; Mancabelli L; Fontana F; Anzalone R; Viappiani A; Turroni F; Ventura M; Milani C
    Microb Biotechnol; 2023 Sep; 16(9):1774-1789. PubMed ID: 37491806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into phenotypic and genotypic differences between vaginal
    Costantini PE; Firrincieli A; Fedi S; Parolin C; Viti C; Cappelletti M; Vitali B
    Microb Genom; 2021 Jun; 7(6):. PubMed ID: 34096840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Gardnerella vaginalis.
    Ojala T; Kankainen M; Castro J; Cerca N; Edelman S; Westerlund-Wikström B; Paulin L; Holm L; Auvinen P
    BMC Genomics; 2014 Dec; 15():1070. PubMed ID: 25480015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics of canine Lactobacillus reuteri reveals adaptation to a shared environment with humans.
    Son S; Oh JD; Lee SH; Shin D; Kim Y
    Genes Genomics; 2020 Sep; 42(9):1107-1116. PubMed ID: 32761525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Genomics Analysis of
    Wang S; Yang B; Ross RP; Stanton C; Zhao J; Zhang H; Chen W
    Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31936280
    [No Abstract]   [Full Text] [Related]  

  • 9. Evaluation of Modulatory Activities of Lactobacillus crispatus Strains in the Context of the Vaginal Microbiota.
    Argentini C; Fontana F; Alessandri G; Lugli GA; Mancabelli L; Ossiprandi MC; van Sinderen D; Ventura M; Milani C; Turroni F
    Microbiol Spectr; 2022 Apr; 10(2):e0273321. PubMed ID: 35266820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interstrain Variability of Human Vaginal
    Puebla-Barragan S; Watson E; van der Veer C; Chmiel JA; Carr C; Burton JP; Sumarah M; Kort R; Reid G
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361691
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparative genomics of Lactobacillus salivarius strains focusing on their host adaptation.
    Lee JY; Han GG; Kim EB; Choi YJ
    Microbiol Res; 2017 Dec; 205():48-58. PubMed ID: 28942844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a high-molecular-mass Lactobacillus epithelium adhesin (LEA) of Lactobacillus crispatus ST1 that binds to stratified squamous epithelium.
    Edelman SM; Lehti TA; Kainulainen V; Antikainen J; Kylväjä R; Baumann M; Westerlund-Wikström B; Korhonen TK
    Microbiology (Reading); 2012 Jul; 158(Pt 7):1713-1722. PubMed ID: 22516222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of Epithelial Cells and Vaginal Secretions in Pregnant Women When Lactobacillus crispatus or Lactobacillus iners Dominate the Vaginal Microbiome.
    Leizer J; Nasioudis D; Forney LJ; Schneider GM; Gliniewicz K; Boester A; Witkin SS
    Reprod Sci; 2018 Jun; 25(6):854-860. PubMed ID: 28301987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genome analyses of
    Mancabelli L; Mancino W; Lugli GA; Milani C; Viappiani A; Anzalone R; Longhi G; van Sinderen D; Ventura M; Turroni F
    Appl Environ Microbiol; 2021 Apr; 87(8):. PubMed ID: 33579685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal lactobacilli to their environment.
    Mendes-Soares H; Suzuki H; Hickey RJ; Forney LJ
    J Bacteriol; 2014 Apr; 196(7):1458-70. PubMed ID: 24488312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Genomic Study of Lactobacillus jensenii and the Newly Defined Lactobacillus mulieris Species Identifies Species-Specific Functionality.
    Putonti C; Shapiro JW; Ene A; Tsibere O; Wolfe AJ
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32817455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining genome traits that determine the different gut colonization potential of
    Xiao Y; Zhao J; Zhang H; Zhai Q; Chen W
    Microb Genom; 2021 Jun; 7(6):. PubMed ID: 34100697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of helveticin gene in Lactobacillus crispatus strains and evaluation of its use as a phylogenetic marker.
    Stoyancheva G
    Arch Microbiol; 2020 Jan; 202(1):205-208. PubMed ID: 31388693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host and body site-specific adaptation of
    Pan M; Hidalgo-Cantabrana C; Barrangou R
    NAR Genom Bioinform; 2020 Mar; 2(1):lqaa001. PubMed ID: 33575551
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparative genomics of the gut commensal Bifidobacterium bifidum reveals adaptation to carbohydrate utilization.
    Abdelhamid AG; El-Dougdoug NK
    Biochem Biophys Res Commun; 2021 Apr; 547():155-161. PubMed ID: 33610915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.