These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 32230841)
1. How Reproducible are Electrochemical Impedance Spectroscopic Data for Dye-Sensitized Solar Cells? Becker M; Bertrams MS; Constable EC; Housecroft CE Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32230841 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. Wang Q; Moser JE; Grätzel M J Phys Chem B; 2005 Aug; 109(31):14945-53. PubMed ID: 16852893 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of organic dyes with various electron-accepting substituents for p-type dye-sensitized solar cells. Weidelener M; Powar S; Kast H; Yu Z; Boix PP; Li C; Müllen K; Geiger T; Kuster S; Nüesch F; Bach U; Mishra A; Bäuerle P Chem Asian J; 2014 Nov; 9(11):3251-63. PubMed ID: 25234556 [TBL] [Abstract][Full Text] [Related]
4. Unraveling the Dual Character of Sulfur Atoms on Sensitizers in Dye-Sensitized Solar Cells. Aghazada S; Gao P; Yella A; Moehl T; Teuscher J; Moser JE; Grätzel M; Nazeeruddin MK ACS Appl Mater Interfaces; 2016 Oct; 8(40):26827-26833. PubMed ID: 27611814 [TBL] [Abstract][Full Text] [Related]
5. Device physics of dye solar cells. Halme J; Vahermaa P; Miettunen K; Lund P Adv Mater; 2010 Sep; 22(35):E210-34. PubMed ID: 20717984 [TBL] [Abstract][Full Text] [Related]
6. Stability of dye-sensitized solar cells under extended thermal stress. Yadav SK; Ravishankar S; Pescetelli S; Agresti A; Fabregat-Santiago F; Di Carlo A Phys Chem Chem Phys; 2017 Aug; 19(33):22546-22554. PubMed ID: 28809967 [TBL] [Abstract][Full Text] [Related]
7. Sodium Hydroxide Pretreatment as an Effective Approach to Reduce the Dye/Holes Recombination Reaction in P-Type DSCs. Bonomo M; Barbero N; Naponiello G; Giordano M; Dini D; Barolo C Front Chem; 2019; 7():99. PubMed ID: 30873402 [TBL] [Abstract][Full Text] [Related]
8. Linking optical and electrical small amplitude perturbation techniques for dynamic performance characterization of dye solar cells. Halme J Phys Chem Chem Phys; 2011 Jul; 13(27):12435-46. PubMed ID: 21655592 [TBL] [Abstract][Full Text] [Related]
9. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells. De Angelis F Acc Chem Res; 2014 Nov; 47(11):3349-60. PubMed ID: 24856085 [TBL] [Abstract][Full Text] [Related]
10. Morphological and opto-electrical properties of a solution deposited platinum counter electrode for low cost dye sensitized solar cells. Thalluri GK; Décultot M; Henrist C; Dewalque J; Colson P; Habraken S; Spoltore D; Manca J; Cloots R Phys Chem Chem Phys; 2013 Dec; 15(45):19799-806. PubMed ID: 24146075 [TBL] [Abstract][Full Text] [Related]
11. Electron transport analysis for improvement of solid-state dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) as hole conductors. Fukuri N; Masaki N; Kitamura T; Wada Y; Yanagida S J Phys Chem B; 2006 Dec; 110(50):25251-8. PubMed ID: 17165969 [TBL] [Abstract][Full Text] [Related]
12. The influence of charge transport and recombination on the performance of dye-sensitized solar cells. Wang M; Chen P; Humphry-Baker R; Zakeeruddin SM; Grätzel M Chemphyschem; 2009 Jan; 10(1):290-9. PubMed ID: 19115326 [TBL] [Abstract][Full Text] [Related]
13. Cosensitization of Structurally Simple Porphyrin and Anthracene-Based Dye for Dye-Sensitized Solar Cells. Reddy KSK; Chen YC; Wu CC; Hsu CW; Chang YC; Chen CM; Yeh CY ACS Appl Mater Interfaces; 2018 Jan; 10(3):2391-2399. PubMed ID: 29281249 [TBL] [Abstract][Full Text] [Related]
14. Pyridyl/hydroxyphenyl versus carboxyphenyl anchoring moieties in Zn - Thienyl porphyrins for dye sensitized solar cells. Kumar PR; Shajan XS; Mothi EM Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117408. PubMed ID: 31374353 [TBL] [Abstract][Full Text] [Related]
15. A diminutive modification in arylamine electron donors: synthesis, photophysics and solvatochromic analysis--towards the understanding of dye sensitized solar cell performances. Srinivasan V; Panneer M; Jaccob M; Pavithra N; Anandan S; Kathiravan A Phys Chem Chem Phys; 2015 Nov; 17(43):28647-57. PubMed ID: 26444694 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Boschloo G; Hagfeldt A Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388 [TBL] [Abstract][Full Text] [Related]
17. Influence of counter-anions during electrochemical deposition of ZnO on the charge transport dynamics in dye-sensitized solar cells. Richter C; Beu M; Schlettwein D Phys Chem Chem Phys; 2015 Jan; 17(3):1883-90. PubMed ID: 25474267 [TBL] [Abstract][Full Text] [Related]
18. Electron transfer properties of organic dye-sensitized solar cells based on indoline sensitizers with ZnO nanoparticles. Cheng HM; Hsieh WF Nanotechnology; 2010 Dec; 21(48):485202. PubMed ID: 21051799 [TBL] [Abstract][Full Text] [Related]
19. Conical islands of TiO2 nanotube arrays in the photoelectrode of dye-sensitized solar cells. Kim WR; Park H; Choi WY Nanoscale Res Lett; 2015; 10():63. PubMed ID: 25852360 [TBL] [Abstract][Full Text] [Related]
20. Optimizing CuO p-type dye-sensitized solar cells by using a comprehensive electrochemical impedance spectroscopic study. Langmar O; Ganivet CR; de la Torre G; Torres T; Costa RD; Guldi DM Nanoscale; 2016 Oct; 8(41):17963-17975. PubMed ID: 27731456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]