These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 32230926)
1. Implication of the p53-Related miR-34c, -125b, and -203 in the Osteoblastic Differentiation and the Malignant Transformation of Bone Sarcomas. Jacques C; Tesfaye R; Lavaud M; Georges S; Baud'huin M; Lamoureux F; Ory B Cells; 2020 Mar; 9(4):. PubMed ID: 32230926 [TBL] [Abstract][Full Text] [Related]
2. MicroRNA-34c inversely couples the biological functions of the runt-related transcription factor RUNX2 and the tumor suppressor p53 in osteosarcoma. van der Deen M; Taipaleenmäki H; Zhang Y; Teplyuk NM; Gupta A; Cinghu S; Shogren K; Maran A; Yaszemski MJ; Ling L; Cool SM; Leong DT; Dierkes C; Zustin J; Salto-Tellez M; Ito Y; Bae SC; Zielenska M; Squire JA; Lian JB; Stein JL; Zambetti GP; Jones SN; Galindo M; Hesse E; Stein GS; van Wijnen AJ J Biol Chem; 2013 Jul; 288(29):21307-21319. PubMed ID: 23720736 [TBL] [Abstract][Full Text] [Related]
3. Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. He C; Xiong J; Xu X; Lu W; Liu L; Xiao D; Wang D Biochem Biophys Res Commun; 2009 Oct; 388(1):35-40. PubMed ID: 19632201 [TBL] [Abstract][Full Text] [Related]
4. The microRNA-29 plays a central role in osteosarcoma pathogenesis and progression. Zhang W; Qian JX; Yi HL; Yang ZD; Wang CF; Chen JY; Wei XZ; Fu Q; Ma H Mol Biol (Mosk); 2012; 46(4):622-7. PubMed ID: 23113351 [TBL] [Abstract][Full Text] [Related]
5. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines. Fenger JM; Roberts RD; Iwenofu OH; Bear MD; Zhang X; Couto JI; Modiano JF; Kisseberth WC; London CA BMC Cancer; 2016 Oct; 16(1):784. PubMed ID: 27724924 [TBL] [Abstract][Full Text] [Related]
6. Tumor-suppressing effects of miR451 in human osteosarcoma. Xu H; Mei Q; Shi L; Lu J; Zhao J; Fu Q Cell Biochem Biophys; 2014 May; 69(1):163-8. PubMed ID: 24218283 [TBL] [Abstract][Full Text] [Related]
7. Molecular Mechanisms and microRNAs in Osteosarcoma Pathogenesis. Kushlinskii NE; Fridman MV; Braga EA Biochemistry (Mosc); 2016 Apr; 81(4):315-28. PubMed ID: 27293089 [TBL] [Abstract][Full Text] [Related]
8. Osteosarcoma and osteoblastic differentiation: a new perspective on oncogenesis. Haydon RC; Luu HH; He TC Clin Orthop Relat Res; 2007 Jan; 454():237-46. PubMed ID: 17075380 [TBL] [Abstract][Full Text] [Related]
9. The Protein Tyrosine Phosphatase Rptpζ Suppresses Osteosarcoma Development in Trp53-Heterozygous Mice. Baldauf C; Jeschke A; Kanbach V; Catala-Lehnen P; Baumhoer D; Gerull H; Buhs S; Amling M; Nollau P; Harroch S; Schinke T PLoS One; 2015; 10(9):e0137745. PubMed ID: 26360410 [TBL] [Abstract][Full Text] [Related]
10. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. Walia MK; Ho PM; Taylor S; Ng AJ; Gupte A; Chalk AM; Zannettino AC; Martin TJ; Walkley CR Elife; 2016 Apr; 5():. PubMed ID: 27070462 [TBL] [Abstract][Full Text] [Related]
11. Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. Lengner CJ; Steinman HA; Gagnon J; Smith TW; Henderson JE; Kream BE; Stein GS; Lian JB; Jones SN J Cell Biol; 2006 Mar; 172(6):909-21. PubMed ID: 16533949 [TBL] [Abstract][Full Text] [Related]
12. p53-dependent activation of microRNA-34a in response to etoposide-induced DNA damage in osteosarcoma cell lines not impaired by dominant negative p53 expression. Novello C; Pazzaglia L; Conti A; Quattrini I; Pollino S; Perego P; Picci P; Benassi MS PLoS One; 2014; 9(12):e114757. PubMed ID: 25490093 [TBL] [Abstract][Full Text] [Related]
13. Role of miR-142 in the pathogenesis of osteosarcoma and its potential as therapeutic approach. Shabani P; Izadpanah S; Aghebati-Maleki A; Baghbani E; Baghbanzadeh A; Fotouhi A; Bakhshinejad B; Aghebati-Maleki L; Baradaran B J Cell Biochem; 2019 Apr; 120(4):4783-4793. PubMed ID: 30450580 [TBL] [Abstract][Full Text] [Related]
14. MiR-127-3p inhibits cell growth and invasiveness by targeting ITGA6 in human osteosarcoma. Wang D; Tang L; Wu H; Wang K; Gu D IUBMB Life; 2018 May; 70(5):411-419. PubMed ID: 29573114 [TBL] [Abstract][Full Text] [Related]
15. miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3. Liu LH; Li H; Li JP; Zhong H; Zhang HC; Chen J; Xiao T Biochem Biophys Res Commun; 2011 Dec; 416(1-2):31-8. PubMed ID: 22093834 [TBL] [Abstract][Full Text] [Related]
16. Integrated approaches to miRNAs target definition: time-series analysis in an osteosarcoma differentiative model. Grilli A; Sciandra M; Terracciano M; Picci P; Scotlandi K BMC Med Genomics; 2015 Jun; 8():34. PubMed ID: 26123714 [TBL] [Abstract][Full Text] [Related]
17. p53 transactivity during in vitro osteoblast differentiation in a rat osteosarcoma cell line. Schwartz KA; Lanciloti NJ; Moore MK; Campione AL; Chandar N Mol Carcinog; 1999 Jun; 25(2):132-8. PubMed ID: 10365915 [TBL] [Abstract][Full Text] [Related]
18. TGF-β1-induced miR-202 mediates drug resistance by inhibiting apoptosis in human osteosarcoma. Lin Z; Song D; Wei H; Yang X; Liu T; Yan W; Xiao J J Cancer Res Clin Oncol; 2016 Jan; 142(1):239-46. PubMed ID: 26276504 [TBL] [Abstract][Full Text] [Related]
19. Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression. Xie CH; Cao YM; Huang Y; Shi QW; Guo JH; Fan ZW; Li JG; Chen BW; Wu BY Tumour Biol; 2016 Nov; 37(11):15031-15041. PubMed ID: 27658774 [TBL] [Abstract][Full Text] [Related]
20. Cell cycle changes mediated by the p53/miR-34c axis are involved in the malignant transformation of human bronchial epithelial cells by benzo[a]pyrene. Han Z; Zhang Y; Xu Y; Ji J; Xu W; Zhao Y; Luo F; Wang B; Bian Q; Liu Q Toxicol Lett; 2014 Mar; 225(2):275-84. PubMed ID: 24362009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]