These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32230966)

  • 1. Environmental Noise Classification Using Convolutional Neural Networks with Input Transform for Hearing Aids.
    Park G; Lee S
    Int J Environ Res Public Health; 2020 Mar; 17(7):. PubMed ID: 32230966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental Noise Classification with Inception-Dense Blocks for Hearing Aids.
    Ting PJ; Ruan SJ; Li LP
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for enhancing speech and warning signals based on parallel convolutional neural networks in a noisy environment.
    Kang HL; Na SD; Kim MN
    Technol Health Care; 2021; 29(S1):141-152. PubMed ID: 33682754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a transient noise reduction strategy for hearing AIDS.
    Liu H; Zhang H; Bentler RA; Han D; Zhang L
    J Am Acad Audiol; 2012 Sep; 23(8):606-15. PubMed ID: 22967735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An environment-adaptive management algorithm for hearing-support devices incorporating listening situation and noise type classifiers.
    Yook S; Nam KW; Kim H; Hong SH; Jang DP; Kim IY
    Artif Organs; 2015 Apr; 39(4):361-8. PubMed ID: 25284135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Empirical Mode Decomposition-Based Feature Extraction for Environmental Sound Classification.
    Ahmed A; Serrestou Y; Raoof K; Diouris JF
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of a Deep Learning Algorithm Based on Vertical Ground Reaction Force Time-Frequency Features for the Detection and Severity Classification of Parkinson's Disease.
    Setiawan F; Lin CW
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient Methodology for Brain MRI Classification Based on DWT and Convolutional Neural Network.
    Fayaz M; Torokeldiev N; Turdumamatov S; Qureshi MS; Qureshi MB; Gwak J
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional neural networks based efficient approach for classification of lung diseases.
    Demir F; Sengur A; Bajaj V
    Health Inf Sci Syst; 2020 Dec; 8(1):4. PubMed ID: 31915523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking Audio Signal Representation Techniques for Classification with Convolutional Neural Networks.
    Sharan RV; Xiong H; Berkovsky S
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Batch Similarity Based Triplet Loss Assembled into Light-Weighted Convolutional Neural Networks for Medical Image Classification.
    Huang Z; Zhou Q; Zhu X; Zhang X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceptual time-frequency subtraction algorithm for noise reduction in hearing aids.
    Li M; McAllister HG; Black ND; De Pérez TA
    IEEE Trans Biomed Eng; 2001 Sep; 48(9):979-88. PubMed ID: 11534846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Diagonal-Steering-Based Binaural Beamforming Algorithm Incorporating a Diagonal Speech Localizer for Persons With Bilateral Hearing Impairment.
    Lee JC; Nam KW; Jang DP; Kim IY
    Artif Organs; 2015 Dec; 39(12):1061-8. PubMed ID: 25959133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise reduction for binaural hearing aids using unsupervised diffuse noise estimator.
    Ji Y; Park Y; Kim D; Sohn J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7916-9. PubMed ID: 22256176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets.
    Pintelas E; Livieris IE; Pintelas PE
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users.
    Goehring T; Bolner F; Monaghan JJ; van Dijk B; Zarowski A; Bleeck S
    Hear Res; 2017 Feb; 344():183-194. PubMed ID: 27913315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature-Based Fusion Using CNN for Lung and Heart Sound Classification.
    Tariq Z; Shah SK; Lee Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Computationally Efficient Sound Environment Classifier for Hearing Aids.
    Gil-Pita R; Ayllón D; Ranilla J; Llerena-Aguilar C; Díaz I
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2358-68. PubMed ID: 25935024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.