BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32231107)

  • 1. TiO
    Li Z; Yu L; Wang H; Yang H; Ma H
    Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32231107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Size Effect of TiO
    Li Z; Yu L
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure.
    Lee YS; Gopi CV; Venkata-Haritha M; Kim HJ
    Dalton Trans; 2016 Aug; 45(32):12914-23. PubMed ID: 27477125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photovoltaic performance utilizing effective charge transfers and light scattering effects by the combination of mesoporous, hollow 3D-ZnO along with 1D-ZnO in CdS quantum dot sensitized solar cells.
    Chetia TR; Barpuzary D; Qureshi M
    Phys Chem Chem Phys; 2014 May; 16(20):9625-33. PubMed ID: 24730023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of co-sensitization of InSb quantum dots on enhancing the photoconversion efficiency of CdS based quantum dot sensitized solar cells.
    Archana T; Vijayakumar K; Subashini G; Nirmala Grace A; Arivanandhan M; Jayavel R
    RSC Adv; 2020 Apr; 10(25):14837-14845. PubMed ID: 35497140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency Enhancement of Solid-State CuInS
    Fu B; Deng C; Yang L
    Nanoscale Res Lett; 2019 Jun; 14(1):198. PubMed ID: 31172299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.
    Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ
    Nanoscale; 2015 Aug; 7(29):12552-63. PubMed ID: 26140442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.
    Chang JY; Lin JM; Su LF; Chang CF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Zn
    Yu L; Li Z
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30678147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of TiO2 nanoflowers as a compact layer for CdS quantum-dot sensitized solar cells with improved performance.
    Rao SS; Durga IK; Gopi CV; Venkata Tulasivarma C; Kim SK; Kim HJ
    Dalton Trans; 2015 Jul; 44(28):12852-62. PubMed ID: 26102365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency Enhancement of Quantum Dot Sensitized TiO
    Zhao H; Huang F; Hou J; Liu Z; Wu Q; Cao H; Jing Q; Peng S; Cao G
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26675-26682. PubMed ID: 27648815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Photoanode for Dye-Sensitized Solar Cells with Enhanced Light-Harvesting and Electron-Collection Efficiency.
    Song W; Gong Y; Tian J; Cao G; Zhao H; Sun C
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13418-25. PubMed ID: 27169327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency enhancement of cubic perovskite BaSnO3 nanostructures based dye sensitized solar cells.
    Rajamanickam N; Soundarrajan P; Vendra VK; Jasinski JB; Sunkara MK; Ramachandran K
    Phys Chem Chem Phys; 2016 Mar; 18(12):8468-78. PubMed ID: 26935818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of the effects of ZnO inverse opal pore size in the composite of ZnO nanorods/ZnO inverse opal on the performance of quantum dot-sensitized solar cells.
    Wang Z; Liu Y; Li L; Gao S; Zhu D; Yu X; Cheng S; Zheng D; Xiong Y
    Dalton Trans; 2022 Dec; 52(1):81-89. PubMed ID: 36458658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots.
    Muthalif MPA; Sunesh CD; Choe Y
    J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-Pot Synthesis of Mesoporous TiO₂ Micropheres and Its Application for High-Efficiency Dye-Sensitized Solar Cells.
    Li ZQ; Que YP; Mo LE; Chen WC; Ding Y; Ma YM; Jiang L; Hu LH; Dai SY
    ACS Appl Mater Interfaces; 2015 May; 7(20):10928-34. PubMed ID: 25945694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of Mn ion in ZnSe passivation on electronic band structure for high efficiency CdS/CdSe quantum dot solar cells.
    Lu S; Peng S; Zhang Z; Deng Y; Qin T; Huang J; Ma F; Hou J; Cao G
    Dalton Trans; 2018 Jul; 47(29):9634-9642. PubMed ID: 29974101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of a tripartite-layered TiO
    Khan J; Gu J; He S; Li X; Ahmed G; Liu Z; Akhtar MN; Mai W; Wu M
    Nanoscale; 2017 Jul; 9(28):9913-9920. PubMed ID: 28678289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building high-efficiency CdS/CdSe-sensitized solar cells with a hierarchically branched double-layer architecture.
    Zhu Z; Qiu J; Yan K; Yang S
    ACS Appl Mater Interfaces; 2013 May; 5(10):4000-5. PubMed ID: 23618104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers.
    Huang F; Zhang L; Zhang Q; Hou J; Wang H; Wang H; Peng S; Liu J; Cao G
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34482-34489. PubMed ID: 27936551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.