These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32231107)

  • 41. Influence of TiCl4 post-treatment condition on TiO2 electrode for enhancement photovoltaic efficiency of dye-sensitized solar cells.
    Eom TS; Kim KH; Bark CW; Choi HW
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7705-9. PubMed ID: 25942852
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells.
    Chandiran AK; Abdi-Jalebi M; Nazeeruddin MK; Grätzel M
    ACS Nano; 2014 Mar; 8(3):2261-8. PubMed ID: 24552648
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancing the Performance of Dye-Sensitized Solar Cells with a Gold-Nanoflowers Box.
    Zhang L; Wang ZS
    Chem Asian J; 2016 Nov; 11(22):3283-3289. PubMed ID: 27726303
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influences of Sr-Incorporated TiO2 Layer on the Photovoltaic Properties of Dye-Sensitized Solar Cells.
    Kim ES; Kim DH; Lee SJ; Han YS
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2760-4. PubMed ID: 27455704
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increased photovoltaic performance by the optimized TiClI4 and AlCl3 surface treatment in dye-sensitized solar cells.
    Oh JH; Kim DH; Lee SJ; Kwak G; Han YS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9247-52. PubMed ID: 25971045
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insight into charge carrier separation and solar-light utilization: rGO decorated 3D ZnO hollow microspheres for enhanced photocatalytic hydrogen evolution.
    Wang J; Wang G; Jiang J; Wan Z; Su Y; Tang H
    J Colloid Interface Sci; 2020 Mar; 564():322-332. PubMed ID: 31918200
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Double-layer electrode based on TiO2 nanotubes arrays for enhancing photovoltaic properties in dye-sensitized solar cells.
    He Z; Que W; Sun P; Ren J
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12779-83. PubMed ID: 24304127
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency.
    Dong Z; Lai X; Halpert JE; Yang N; Yi L; Zhai J; Wang D; Tang Z; Jiang L
    Adv Mater; 2012 Feb; 24(8):1046-9. PubMed ID: 22266874
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of three-dimensionally ordered macroporous TiO
    Song X; Ma Z; Deng J; Li X; Wang L; Yan Y; Dong X; Wang Y; Xia C
    Opt Express; 2018 Sep; 26(18):A855-A864. PubMed ID: 30184938
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Double-Sided Transparent TiO
    Chen C; Ling L; Li F
    Nanoscale Res Lett; 2017 Dec; 12(1):4. PubMed ID: 28054330
    [TBL] [Abstract][Full Text] [Related]  

  • 51. TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells.
    Lee W; Kang SH; Kim JY; Kolekar GB; Sung YE; Han SH
    Nanotechnology; 2009 Aug; 20(33):335706. PubMed ID: 19636095
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells.
    Wan J; Liu R; Tong Y; Chen S; Hu Y; Wang B; Xu Y; Wang H
    Nanoscale Res Lett; 2016 Dec; 11(1):12. PubMed ID: 26754938
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface modified TiO2 nanostructure with 3D urchin-like morphology for dye-sensitized solar cell application.
    Shin SS; Kim DW; Lee S; Cho IS; Kim DH; Park JH; Hong KS
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1305-9. PubMed ID: 22629944
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics.
    Choi J; Kim Y; Jo JW; Kim J; Sun B; Walters G; García de Arquer FP; Quintero-Bermudez R; Li Y; Tan CS; Quan LN; Kam APT; Hoogland S; Lu Z; Voznyy O; Sargent EH
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Large pore size and high porosity of TiO2 photoanode for excellent photovoltaic performance of CdS quantum dot sensitized solar cell.
    Shen H; Lin H; Zhao L; Liu Y; Oron D
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1095-100. PubMed ID: 23646579
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance of colloidal CdS sensitized solar cells with ZnO nanorods/nanoparticles.
    Roy A; Das PP; Tathavadekar M; Das S; Devi PS
    Beilstein J Nanotechnol; 2017; 8():210-221. PubMed ID: 28243559
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ethyl Cellulose and Cetrimonium Bromide Assisted Synthesis of Mesoporous, Hexagon Shaped ZnO Nanodisks with Exposed ±{0001} Polar Facets for Enhanced Photovoltaic Performance in Quantum Dot Sensitized Solar Cells.
    Chetia TR; Ansari MS; Qureshi M
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13266-79. PubMed ID: 25966867
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells.
    Yun J; Hwang SH; Jang J
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):2055-63. PubMed ID: 25562329
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improvement of Charge Transportation in Si Quantum Dot-Sensitized Solar Cells Using Vanadium Doped TiO2.
    Seo H; Ichida D; Hashimoto S; Itagaki N; Koga K; Shiratani M; Nam SH; Boo JH
    J Nanosci Nanotechnol; 2016 May; 16(5):4875-9. PubMed ID: 27483838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. TiO2 Sub-microsphere Film as Scaffold Layer for Efficient Perovskite Solar Cells.
    Huang Y; Zhu J; Ding Y; Chen S; Zhang C; Dai S
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8162-7. PubMed ID: 26953635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.