These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32231168)

  • 1. Parallel Droplet Deposition via a Superhydrophobic Plate with Integrated Heater and Temperature Sensors.
    Hintermüller MA; Offenzeller C; Knoll M; Tröls A; Jakoby B
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32231168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces.
    Dash S; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042402. PubMed ID: 24827255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Printed and Flexible Microheaters Based on Carbon Nanotubes.
    Falco A; Romero FJ; Loghin FC; Lyuleeva A; Becherer M; Lugli P; Morales DP; Rodriguez N; Salmerón JF; Rivadeneyra A
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32961690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaporation of Sessile Water Droplets on Horizontal and Vertical Biphobic Patterned Surfaces.
    Qi W; Li J; Weisensee PB
    Langmuir; 2019 Dec; 35(52):17185-17192. PubMed ID: 31809043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How water droplets evaporate on a superhydrophobic substrate.
    Gelderblom H; Marín ÁG; Nair H; van Houselt A; Lefferts L; Snoeijer JH; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026306. PubMed ID: 21405905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates.
    Pan Z; Dash S; Weibel JA; Garimella SV
    Langmuir; 2013 Dec; 29(51):15831-41. PubMed ID: 24320680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaporation of squeezed water droplets between two parallel hydrophobic/superhydrophobic surfaces.
    He X; Cheng J; Patrick Collier C; Srijanto BR; Briggs DP
    J Colloid Interface Sci; 2020 Sep; 576():127-138. PubMed ID: 32408162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces.
    Dash S; Chandramohan A; Weibel JA; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062407. PubMed ID: 25615112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Inkjet-Printed Heaters Utilizing Graphene-Based Inks.
    Barmpakos D; Belessi V; Xanthopoulos N; Krontiras CA; Kaltsas G
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaporation of Initially Heated Sessile Droplets and the Resultant Dried Colloidal Deposits on Substrates Held at Ambient Temperature.
    Chatterjee S; Kumar M; Murallidharan JS; Bhardwaj R
    Langmuir; 2020 Jul; 36(29):8407-8421. PubMed ID: 32602342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis.
    Dash S; Garimella SV
    Langmuir; 2013 Aug; 29(34):10785-95. PubMed ID: 23952149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
    Xu W; Leeladhar R; Kang YT; Choi CH
    Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile printed microheaters to enable low-power thermal control in paper diagnostics.
    Byers KM; Lin LK; Moehling TJ; Stanciu L; Linnes JC
    Analyst; 2019 Dec; 145(1):184-196. PubMed ID: 31729492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Inkjet-Printed Reduced and Functionalized Water-Dispersible Graphene Oxide and Graphene on Polymer Substrate-Application to Printed Temperature Sensors.
    Barmpakos D; Belessi V; Schelwald R; Kaltsas G
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drops on a Superhydrophobic Hole Hanging On under Evaporation.
    Chung DCK; Huynh SH; Katariya M; Chan AYC; Wang S; Jiang X; Muradoglu M; Liew OW; Ng TW
    ACS Omega; 2017 Sep; 2(9):6211-6222. PubMed ID: 31457866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaporation dynamics of a sessile droplet on glass surfaces with fluoropolymer coatings: focusing on the final stage of thin droplet evaporation.
    Gatapova EY; Shonina AM; Safonov AI; Sulyaeva VS; Kabov OA
    Soft Matter; 2018 Mar; 14(10):1811-1821. PubMed ID: 29442108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sessile droplets containing carbon nanotubes: a study of evaporation dynamics and CNT alignment for printed electronics.
    Goh GL; Saengchairat N; Agarwala S; Yeong WY; Tran T
    Nanoscale; 2019 Jun; 11(22):10603-10614. PubMed ID: 31135018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaporative characteristics of sessile nanofluid droplet on micro-structured heated surface.
    Zhu GP; Ong KS; Chong KS; Yao JF; Huang HL; Duan F
    Electrophoresis; 2019 Mar; 40(6):845-850. PubMed ID: 30318774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.