These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32231205)

  • 1. Ab initio electron-two-phonon scattering in GaAs from next-to-leading order perturbation theory.
    Lee NE; Zhou JJ; Chen HY; Bernardi M
    Nat Commun; 2020 Mar; 11(1):1607. PubMed ID: 32231205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio study of hot electrons in GaAs.
    Bernardi M; Vigil-Fowler D; Ong CS; Neaton JB; Louie SG
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5291-6. PubMed ID: 25870287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio method for calculating electron-phonon scattering times in semiconductors: application to GaAs and GaP.
    Sjakste J; Vast N; Tyuterev V
    Phys Rev Lett; 2007 Dec; 99(23):236405. PubMed ID: 18233390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton-Phonon Interaction and Relaxation Times from First Principles.
    Chen HY; Sangalli D; Bernardi M
    Phys Rev Lett; 2020 Sep; 125(10):107401. PubMed ID: 32955294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piezoelectric Electron-Phonon Interaction from Ab Initio Dynamical Quadrupoles: Impact on Charge Transport in Wurtzite GaN.
    Jhalani VA; Zhou JJ; Park J; Dreyer CE; Bernardi M
    Phys Rev Lett; 2020 Sep; 125(13):136602. PubMed ID: 33034493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon Lifetimes throughout the Brillouin Zone at Elevated Temperatures from Experiment and Ab Initio.
    Glensk A; Grabowski B; Hickel T; Neugebauer J; Neuhaus J; Hradil K; Petry W; Leitner M
    Phys Rev Lett; 2019 Dec; 123(23):235501. PubMed ID: 31868491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab Initio Approach to Second-order Resonant Raman Scattering Including Exciton-Phonon Interaction.
    Gillet Y; Kontur S; Giantomassi M; Draxl C; Gonze X
    Sci Rep; 2017 Aug; 7(1):7344. PubMed ID: 28779127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-Phonon Scattering in the Presence of Soft Modes and Electron Mobility in SrTiO_{3} Perovskite from First Principles.
    Zhou JJ; Hellman O; Bernardi M
    Phys Rev Lett; 2018 Nov; 121(22):226603. PubMed ID: 30547621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron-Phonon Coupling from Ab Initio Linear-Response Theory within the GW Method: Correlation-Enhanced Interactions and Superconductivity in Ba_{1-x}K_{x}BiO_{3}.
    Li Z; Antonius G; Wu M; da Jornada FH; Louie SG
    Phys Rev Lett; 2019 May; 122(18):186402. PubMed ID: 31144877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon lifetimes from first-principles self-consistent lattice dynamics.
    Souvatzis P
    J Phys Condens Matter; 2011 Nov; 23(44):445401. PubMed ID: 22004848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of phonon-phonon and electron-phonon scattering in thermal transport in PdCoO
    Cheng L; Yan QB; Hu M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21714-21721. PubMed ID: 28776621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon Thermal Transport in UO_{2} via Self-Consistent Perturbation Theory.
    Zhou S; Xiao E; Ma H; Gofryk K; Jiang C; Manley ME; Hurley DH; Marianetti CA
    Phys Rev Lett; 2024 Mar; 132(10):106502. PubMed ID: 38518342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-phonon interactions and the intrinsic electrical resistivity of graphene.
    Park CH; Bonini N; Sohier T; Samsonidze G; Kozinsky B; Calandra M; Mauri F; Marzari N
    Nano Lett; 2014 Mar; 14(3):1113-9. PubMed ID: 24524418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electron-phonon scattering and carrier mobility in monolayer AsSb.
    Luo Y; Zhao G; Wang S
    Phys Chem Chem Phys; 2020 Mar; 22(10):5688-5692. PubMed ID: 32103226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio phonon properties of half-Heusler NiTiSn, NiZrSn and NiHfSn.
    Andrea L; Hug G; Chaput L
    J Phys Condens Matter; 2015 Oct; 27(42):425401. PubMed ID: 26441218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dominant Scattering Mechanisms in Limiting the Electron Mobility of Scandium Nitride.
    Rudra S; Rao D; Poncé S; Saha B
    Nano Lett; 2024 Sep; 24(37):11529-11536. PubMed ID: 39240254
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Zhang XW; Cao T
    J Phys Condens Matter; 2022 Apr; 34(26):. PubMed ID: 35405669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function.
    Dahnovsky Y
    J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure dependence of transverse acoustic phonon energy in ferropericlase across the spin transition.
    Fukui H; Baron AQR; Ishikawa D; Uchiyama H; Ohishi Y; Tsuchiya T; Kobayashi H; Matsuzaki T; Yoshino T; Katsura T
    J Phys Condens Matter; 2017 Jun; 29(24):245401. PubMed ID: 28452741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton Lifetime and Optical Line Width Profile via Exciton-Phonon Interactions: Theory and First-Principles Calculations for Monolayer MoS
    Chan YH; Haber JB; Naik MH; Neaton JB; Qiu DY; da Jornada FH; Louie SG
    Nano Lett; 2023 May; 23(9):3971-3977. PubMed ID: 37071728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.