These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32231238)

  • 1. A Novel Relative Permeability Model for Gas and Water Flow in Hydrate-Bearing Sediments With Laboratory and Field-Scale Application.
    Singh H; Myshakin EM; Seol Y
    Sci Rep; 2020 Mar; 10(1):5697. PubMed ID: 32231238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a coupled geophysical-geothermal scheme for quantification of hydrates in gas hydrate-bearing permafrost sediments.
    Vasheghani Farahani M; Hassanpouryouzband A; Yang J; Tohidi B
    Phys Chem Chem Phys; 2021 Nov; 23(42):24249-24264. PubMed ID: 34668900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel apparatus for modeling the geological responses of reservoir and fluid-solid production behaviors during hydrate production.
    Liu Z; Zhao Y; Gong G; Hu W; Zhang Z; Ning F
    Rev Sci Instrum; 2022 Dec; 93(12):125109. PubMed ID: 36586933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Simulation on the Dissociation, Formation, and Recovery of Gas Hydrates on Microscale Approach.
    Sholihah M; Sean WY
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the climate-driven evolution of gas hydrate-bearing permafrost sediments: implications for prediction of environmental impacts and security of energy in cold regions.
    Vasheghani Farahani M; Hassanpouryouzband A; Yang J; Tohidi B
    RSC Adv; 2021 Apr; 11(24):14334-14346. PubMed ID: 35423992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A testing assembly for combination measurements on gas hydrate-bearing sediments using x-ray computed tomography and low-field nuclear magnetic resonance.
    Zhang Z; Liu L; Li C; Liu C; Ning F; Liu Z; Meng Q
    Rev Sci Instrum; 2021 Aug; 92(8):085108. PubMed ID: 34470383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas hydrate saturations estimated from pore-and fracture-filling gas hydrate reservoirs in the Qilian Mountain permafrost, China.
    Xiao K; Zou C; Lu Z; Deng J
    Sci Rep; 2017 Nov; 7(1):16258. PubMed ID: 29176704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative permeability for water and gas through fractures in cement.
    Rod KA; Um W; Colby SM; Rockhold ML; Strickland CE; Han S; Kuprat AP
    PLoS One; 2019; 14(1):e0210741. PubMed ID: 30673742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore-network study of methane hydrate dissociation.
    Tsimpanogiannis IN; Lichtner PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056303. PubMed ID: 17279989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated experimental system and method for gas hydrate-bearing sediments considering stress-seepage coupling.
    Zhao Y; Kong L; Hu G; Liu L; Liu J; Ji Y; Sang S
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37796098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. More general capillary pressure and relative permeability models from fractal geometry.
    Li K
    J Contam Hydrol; 2010 Jan; 111(1-4):13-24. PubMed ID: 19923036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Evaluation of Gas Hydrate Production Performance of the Depressurization and Backfilling with an In Situ Supplemental Heat Method.
    Xu T; Zhang Z; Li S; Li X; Lu C
    ACS Omega; 2021 May; 6(18):12274-12286. PubMed ID: 34056380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating computational fluid dynamic, artificial intelligence techniques, and pore network modeling to predict relative permeability of gas condensate.
    Zeinedini E; Dabir B; Dadvar M
    Sci Rep; 2022 Dec; 12(1):21457. PubMed ID: 36509787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling heating curve for gas hydrate dissociation in porous media.
    Dicharry C; Gayet P; Marion G; Graciaa A; Nesterov AN
    J Phys Chem B; 2005 Sep; 109(36):17205-11. PubMed ID: 16853195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore-scale observations of natural hydrate-bearing sediments via pressure core sub-coring and micro-CT scanning.
    Lei L; Park T; Jarvis K; Pan L; Tepecik I; Zhao Y; Ge Z; Choi JH; Gai X; Galindo-Torres SA; Boswell R; Dai S; Seol Y
    Sci Rep; 2022 Mar; 12(1):3471. PubMed ID: 35236868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments.
    Seol Y; Choi JH; Dai S
    Rev Sci Instrum; 2014 Aug; 85(8):084501. PubMed ID: 25173288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of triaxial testing and pore-scale visualization of methane hydrate bearing sediments.
    Seol Y; Lei L; Choi JH; Jarvis K; Hill D
    Rev Sci Instrum; 2019 Dec; 90(12):124504. PubMed ID: 31893836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction Model for Tight Gas Wells with Time-Dependent Mechanism and Stress Sensitivity Effect.
    Bai Y; Wang S; Xu B; Li D; Fan W; Wu J; Jiang B; Huang S
    ACS Omega; 2023 Nov; 8(45):43037-43050. PubMed ID: 38024739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas and liquid permeability in the variably saturated compacted loess used as an earthen final cover material in landfills.
    Zhang D; Wang J; Chen C
    Waste Manag; 2020 Mar; 105():49-60. PubMed ID: 32028101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the use of time-lapse GPR data as observations for inverse multiphase flow simulations of DNAPL migration.
    Johnson RH; Poeter EP
    J Contam Hydrol; 2007 Jan; 89(1-2):136-55. PubMed ID: 17050034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.