These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32231241)

  • 1. Nonlinear Luttinger liquid plasmons in semiconducting single-walled carbon nanotubes.
    Wang S; Zhao S; Shi Z; Wu F; Zhao Z; Jiang L; Watanabe K; Taniguchi T; Zettl A; Zhou C; Wang F
    Nat Mater; 2020 Sep; 19(9):986-991. PubMed ID: 32231241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon.
    Wang S; Wu F; Zhao S; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2019 Apr; 19(4):2360-2365. PubMed ID: 30908062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of Electron Tunneling and Plasmon Propagation in a Luttinger Liquid.
    Zhao S; Wang S; Wu F; Shi W; Utama IB; Lyu T; Jiang L; Su Y; Wang S; Watanabe K; Taniguchi T; Zettl A; Zhang X; Zhou C; Wang F
    Phys Rev Lett; 2018 Jul; 121(4):047702. PubMed ID: 30095956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gate-tunable plasmons in mixed-dimensional van der Waals heterostructures.
    Wang S; Yoo S; Zhao S; Zhao W; Kahn S; Cui D; Wu F; Jiang L; Utama MIB; Li H; Li S; Zibrov A; Regan E; Wang D; Zhang Z; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nat Commun; 2021 Aug; 12(1):5039. PubMed ID: 34413291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.
    Chudow JD; Santavicca DF; Prober DE
    Nano Lett; 2016 Aug; 16(8):4909-16. PubMed ID: 27439013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Luttinger-liquid plasmons in carbon nanotubes by chemical doping.
    Tian X; Gu Q; Duan J; Chen R; Liu H; Hou Y; Chen J
    Nanoscale; 2018 Apr; 10(14):6288-6293. PubMed ID: 29577139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Visualization of Ultrastrong Coupling between Luttinger-Liquid Plasmons and Phonon Polaritons.
    Németh G; Otsuka K; Datz D; Pekker Á; Maruyama S; Borondics F; Kamarás K
    Nano Lett; 2022 Apr; 22(8):3495-3502. PubMed ID: 35315666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared Light-Emitting Devices from Antenna-Coupled Luttinger Liquid Plasmons In Carbon Nanotubes.
    Yoo S; Zhao S; Wang F
    Phys Rev Lett; 2021 Dec; 127(25):257702. PubMed ID: 35029454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry-Perot Plasmonic Resonators.
    Wang S; Wu F; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2020 Apr; 20(4):2695-2702. PubMed ID: 32134275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal nature of collective plasmonic excitations in finite 1D carbon-based nanostructures.
    Polizzi E; Yngvesson SK
    Nanotechnology; 2015 Aug; 26(32):325201. PubMed ID: 26202877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures.
    Ishii H; Kataura H; Shiozawa H; Yoshioka H; Otsubo H; Takayama Y; Miyahara T; Suzuki S; Achiba Y; Nakatake M; Narimura T; Higashiguchi M; Shimada K; Namatame H; Taniguchi M
    Nature; 2003 Dec; 426(6966):540-4. PubMed ID: 14654836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes.
    Yanagi K; Okada R; Ichinose Y; Yomogida Y; Katsutani F; Gao W; Kono J
    Nat Commun; 2018 Mar; 9(1):1121. PubMed ID: 29549341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.
    Jiang T; Hong H; Liu C; Liu WT; Liu K; Wu S
    Nano Lett; 2018 Apr; 18(4):2590-2594. PubMed ID: 29543467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging gate-tunable Tomonaga-Luttinger liquids in 1H-MoSe
    Zhu T; Ruan W; Wang YQ; Tsai HZ; Wang S; Zhang C; Wang T; Liou F; Watanabe K; Taniguchi T; Neaton JB; Weber-Bargioni A; Zettl A; Qiu ZQ; Zhang G; Wang F; Moore JE; Crommie MF
    Nat Mater; 2022 Jul; 21(7):748-753. PubMed ID: 35710632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tomonaga-Luttinger liquid features in ballistic single-walled carbon nanotubes: conductance and shot noise.
    Kim NY; Recher P; Oliver WD; Yamamoto Y; Kong J; Dai H
    Phys Rev Lett; 2007 Jul; 99(3):036802. PubMed ID: 17678308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton dynamics in carbon nanotubes: from the Luttinger liquid to harmonic oscillators.
    Sweeney MC; Eaves JD
    Phys Rev Lett; 2014 Mar; 112(10):107402. PubMed ID: 24679327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the electron-phonon coupling of individual single-walled carbon nanotubes.
    Oron-Carl M; Hennrich F; Kappes MM; Löhneysen HV; Krupke R
    Nano Lett; 2005 Sep; 5(9):1761-7. PubMed ID: 16159220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional Plasmons in Laterally Confined 2D Electron Systems.
    Zagorodnev IV; Zabolotnykh AA; Rodionov DA; Volkov VA
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging tunable Luttinger liquid systems in van der Waals heterostructures.
    Li H; Xiang Z; Wang T; Naik MH; Kim W; Nie J; Li S; Ge Z; He Z; Ou Y; Banerjee R; Taniguchi T; Watanabe K; Tongay S; Zettl A; Louie SG; Zaletel MP; Crommie MF; Wang F
    Nature; 2024 Jul; ():. PubMed ID: 38961296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition from a Tomonaga-Luttinger liquid to a fermi liquid in potassium-intercalated bundles of single-wall carbon nanotubes.
    Rauf H; Pichler T; Knupfer M; Fink J; Kataura H
    Phys Rev Lett; 2004 Aug; 93(9):096805. PubMed ID: 15447126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.