These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32231241)

  • 21. Length-dependent plasmon resonance in single-walled carbon nanotubes.
    Morimoto T; Joung SK; Saito T; Futaba DN; Hata K; Okazaki T
    ACS Nano; 2014 Oct; 8(10):9897-904. PubMed ID: 25283493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scattering of plasmons at the intersection of two metallic nanotubes: implications for tunneling.
    Mkhitaryan VV; Fang Y; Gerton JM; Mishchenko EG; Raikh ME
    Phys Rev Lett; 2008 Dec; 101(25):256401. PubMed ID: 19113728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal disruption of a Luttinger liquid.
    Cavazos-Cavazos D; Senaratne R; Kafle A; Hulet RG
    Nat Commun; 2023 May; 14(1):3154. PubMed ID: 37258570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shot noise enhancement from non-equilibrium plasmons in Luttinger liquid junctions.
    Kim JU; Kinaret JM; Choi MS
    J Phys Condens Matter; 2005 Jun; 17(25):3815-22. PubMed ID: 21690698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for spin-charge separation in quasi-one-dimensional organic conductors.
    Lorenz T; Hofmann M; Grüninger M; Freimuth A; Uhrig GS; Dumm M; Dressel M
    Nature; 2002 Aug; 418(6898):614-7. PubMed ID: 12167854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-Dimensional Liquid ^{4}He: Dynamical Properties beyond Luttinger-Liquid Theory.
    Bertaina G; Motta M; Rossi M; Vitali E; Galli DE
    Phys Rev Lett; 2016 Apr; 116(13):135302. PubMed ID: 27081985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum Confined Tomonaga-Luttinger Liquid in Mo
    Xia Y; Wang B; Zhang J; Jin Y; Tian H; Ho W; Xu H; Jin C; Xie M
    Nano Lett; 2020 Mar; 20(3):2094-2099. PubMed ID: 32092277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fundamental optical processes in armchair carbon nanotubes.
    Hároz EH; Duque JG; Tu X; Zheng M; Hight Walker AR; Hauge RH; Doorn SK; Kono J
    Nanoscale; 2013 Feb; 5(4):1411-39. PubMed ID: 23340668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Narrow-gap Luttinger liquid in carbon nanotubes.
    Levitov LS; Tsvelik AM
    Phys Rev Lett; 2003 Jan; 90(1):016401. PubMed ID: 12570634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anisotropic 2D metallicity: plasmons in Ge(1 0 0)-Au.
    Lichtenstein T; Mamiyev Z; Jeckelmann E; Tegenkamp C; Pfnür H
    J Phys Condens Matter; 2019 May; 31(17):175001. PubMed ID: 30695765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-energy acoustic plasmons at metal surfaces.
    Diaconescu B; Pohl K; Vattuone L; Savio L; Hofmann P; Silkin VM; Pitarke JM; Chulkov EV; Echenique PM; Farías D; Rocca M
    Nature; 2007 Jul; 448(7149):57-9. PubMed ID: 17611537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmon decay and thermal transport from spin-charge coupling in generic Luttinger liquids.
    Levchenko A
    Phys Rev Lett; 2014 Nov; 113(19):196401. PubMed ID: 25415912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning the many-body interactions in a helical Luttinger liquid.
    Jia J; Marcellina E; Das A; Lodge MS; Wang B; Ho DQ; Biswas R; Pham TA; Tao W; Huang CY; Lin H; Bansil A; Mukherjee S; Weber B
    Nat Commun; 2022 Oct; 13(1):6046. PubMed ID: 36266271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crossover from the Luttinger-liquid to Coulomb-blockade regime in carbon nanotubes.
    Bellucci S; González J; Onorato P
    Phys Rev Lett; 2005 Oct; 95(18):186403. PubMed ID: 16383926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy.
    Li J; He Y; Han Y; Liu K; Wang J; Li Q; Fan S; Jiang K
    Nano Lett; 2012 Aug; 12(8):4095-101. PubMed ID: 22730928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes.
    Zhang Y; Zhang Q; Schwingenschlögl U
    Nano Lett; 2017 Nov; 17(11):6747-6751. PubMed ID: 29039674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum phase transition in a resonant level coupled to interacting leads.
    Mebrahtu HT; Borzenets IV; Liu DE; Zheng H; Bomze YV; Smirnov AI; Baranger HU; Finkelstein G
    Nature; 2012 Aug; 488(7409):61-4. PubMed ID: 22859201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.