These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Néel-Type Elliptical Skyrmions in a Laterally Asymmetric Magnetic Multilayer. Cui B; Yu D; Shao Z; Liu Y; Wu H; Nan P; Zhu Z; Wu C; Guo T; Chen P; Zhou HA; Xi L; Jiang W; Wang H; Liang S; Du H; Wang KL; Wang W; Wu K; Han X; Zhang G; Yang H; Yu G Adv Mater; 2021 Mar; 33(12):e2006924. PubMed ID: 33599001 [TBL] [Abstract][Full Text] [Related]
4. Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles. Ma C; Zhang X; Xia J; Ezawa M; Jiang W; Ono T; Piramanayagam SN; Morisako A; Zhou Y; Liu X Nano Lett; 2019 Jan; 19(1):353-361. PubMed ID: 30537837 [TBL] [Abstract][Full Text] [Related]
5. Acoustic-driven magnetic skyrmion motion. Yang Y; Zhao L; Yi D; Xu T; Chai Y; Zhang C; Jiang D; Ji Y; Hou D; Jiang W; Tang J; Yu P; Wu H; Nan T Nat Commun; 2024 Feb; 15(1):1018. PubMed ID: 38310112 [TBL] [Abstract][Full Text] [Related]
6. Magnetic Direct-Write Skyrmion Nanolithography. Ognev AV; Kolesnikov AG; Kim YJ; Cha IH; Sadovnikov AV; Nikitov SA; Soldatov IV; Talapatra A; Mohanty J; Mruczkiewicz M; Ge Y; Kerber N; Dittrich F; Virnau P; Kläui M; Kim YK; Samardak AS ACS Nano; 2020 Nov; 14(11):14960-14970. PubMed ID: 33152236 [TBL] [Abstract][Full Text] [Related]
7. Ferrimagnetic Skyrmions in Topological Insulator/Ferrimagnet Heterostructures. Wu H; Groß F; Dai B; Lujan D; Razavi SA; Zhang P; Liu Y; Sobotkiewich K; Förster J; Weigand M; Schütz G; Li X; Gräfe J; Wang KL Adv Mater; 2020 Aug; 32(34):e2003380. PubMed ID: 32666575 [TBL] [Abstract][Full Text] [Related]
8. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nayak AK; Kumar V; Ma T; Werner P; Pippel E; Sahoo R; Damay F; Rößler UK; Felser C; Parkin SSP Nature; 2017 Aug; 548(7669):561-566. PubMed ID: 28846999 [TBL] [Abstract][Full Text] [Related]
9. Voltage-controlled magnetic anisotropy gradient-driven skyrmion-based half-adder and full-adder. Sara S; Murapaka C; Haldar A Nanoscale; 2024 Jan; 16(4):1843-1852. PubMed ID: 38168698 [TBL] [Abstract][Full Text] [Related]
10. Observation by SANS and PNR of pure Néel-type domain wall profiles and skyrmion suppression below room temperature in magnetic [Pt/CoFeB/Ru] Ukleev V; Ajejas F; Devishvili A; Vorobiev A; Steinke NJ; Cubitt R; Luo C; Abrudan RM; Radu F; Cros V; Reyren N; White JS Sci Technol Adv Mater; 2024; 25(1):2315015. PubMed ID: 38455384 [TBL] [Abstract][Full Text] [Related]
11. Transformation from Magnetic Soliton to Skyrmion in a Monoaxial Chiral Magnet. Li L; Song D; Wang W; Zheng F; Kovács A; Tian M; Dunin-Borkowski RE; Du H Adv Mater; 2023 Apr; 35(16):e2209798. PubMed ID: 36573473 [TBL] [Abstract][Full Text] [Related]
12. Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures. Lemesh I; Litzius K; Böttcher M; Bassirian P; Kerber N; Heinze D; Zázvorka J; Büttner F; Caretta L; Mann M; Weigand M; Finizio S; Raabe J; Im MY; Stoll H; Schütz G; Dupé B; Kläui M; Beach GSD Adv Mater; 2018 Dec; 30(49):e1805461. PubMed ID: 30368960 [TBL] [Abstract][Full Text] [Related]
13. Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling. Ba Y; Zhuang S; Zhang Y; Wang Y; Gao Y; Zhou H; Chen M; Sun W; Liu Q; Chai G; Ma J; Zhang Y; Tian H; Du H; Jiang W; Nan C; Hu JM; Zhao Y Nat Commun; 2021 Jan; 12(1):322. PubMed ID: 33436572 [TBL] [Abstract][Full Text] [Related]
14. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Boulle O; Vogel J; Yang H; Pizzini S; de Souza Chaves D; Locatelli A; Menteş TO; Sala A; Buda-Prejbeanu LD; Klein O; Belmeguenai M; Roussigné Y; Stashkevich A; Chérif SM; Aballe L; Foerster M; Chshiev M; Auffret S; Miron IM; Gaudin G Nat Nanotechnol; 2016 May; 11(5):449-54. PubMed ID: 26809057 [TBL] [Abstract][Full Text] [Related]
15. Ultrasensitive Sub-monolayer Palladium Induced Chirality Switching and Topological Evolution of Skyrmions. Chen G; Ophus C; Lo Conte R; Wiesendanger R; Yin G; Schmid AK; Liu K Nano Lett; 2022 Aug; 22(16):6678-6684. PubMed ID: 35939526 [TBL] [Abstract][Full Text] [Related]
16. Role of higher-order exchange interactions for skyrmion stability. Paul S; Haldar S; von Malottki S; Heinze S Nat Commun; 2020 Sep; 11(1):4756. PubMed ID: 32958753 [TBL] [Abstract][Full Text] [Related]
17. Fundamental theory of current-induced motion of magnetic skyrmions. Ohki Y; Mochizuki M J Phys Condens Matter; 2024 Oct; 37(2):. PubMed ID: 39393399 [TBL] [Abstract][Full Text] [Related]
19. Room-Temperature Skyrmions in an Antiferromagnet-Based Heterostructure. Yu G; Jenkins A; Ma X; Razavi SA; He C; Yin G; Shao Q; He QL; Wu H; Li W; Jiang W; Han X; Li X; Bleszynski Jayich AC; Amiri PK; Wang KL Nano Lett; 2018 Feb; 18(2):980-986. PubMed ID: 29271208 [TBL] [Abstract][Full Text] [Related]
20. Zero-Field Nucleation and Fast Motion of Skyrmions Induced by Nanosecond Current Pulses in a Ferrimagnetic Thin Film. Quessab Y; Xu JW; Cogulu E; Finizio S; Raabe J; Kent AD Nano Lett; 2022 Aug; 22(15):6091-6097. PubMed ID: 35877983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]