These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 32231336)

  • 41. CRISPR-FOCUS: A web server for designing focused CRISPR screening experiments.
    Cao Q; Ma J; Chen CH; Xu H; Chen Z; Li W; Liu XS
    PLoS One; 2017; 12(9):e0184281. PubMed ID: 28873439
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9.
    Li J; Shou J; Guo Y; Tang Y; Wu Y; Jia Z; Zhai Y; Chen Z; Xu Q; Wu Q
    J Mol Cell Biol; 2015 Aug; 7(4):284-98. PubMed ID: 25757625
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq.
    Wessels HH; Méndez-Mancilla A; Hao Y; Papalexi E; Mauck WM; Lu L; Morris JA; Mimitou EP; Smibert P; Sanjana NE; Satija R
    Nat Methods; 2023 Jan; 20(1):86-94. PubMed ID: 36550277
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct-seq: programmed gRNA scaffold for streamlined scRNA-seq in CRISPR screen.
    Song Q; Ni K; Liu M; Li Y; Wang L; Wang Y; Liu Y; Yu Z; Qi Y; Lu Z; Ma L
    Genome Biol; 2020 Jun; 21(1):136. PubMed ID: 32513233
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries.
    Vidigal JA; Ventura A
    Nat Commun; 2015 Aug; 6():8083. PubMed ID: 26278926
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel sgRNA selection system for CRISPR-Cas9 in mammalian cells.
    Zhang H; Zhang X; Fan C; Xie Q; Xu C; Zhao Q; Liu Y; Wu X; Zhang H
    Biochem Biophys Res Commun; 2016 Mar; 471(4):528-32. PubMed ID: 26879140
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR-ERA: A Webserver for Guide RNA Design of Gene Editing and Regulation.
    Liu H; Wang X
    Methods Mol Biol; 2021; 2189():65-69. PubMed ID: 33180293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.
    Tsai SQ; Zheng Z; Nguyen NT; Liebers M; Topkar VV; Thapar V; Wyvekens N; Khayter C; Iafrate AJ; Le LP; Aryee MJ; Joung JK
    Nat Biotechnol; 2015 Feb; 33(2):187-197. PubMed ID: 25513782
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector.
    Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA
    Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT.
    Raj B; Gagnon JA; Schier AF
    Nat Protoc; 2018 Nov; 13(11):2685-2713. PubMed ID: 30353175
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries.
    Heigwer F; Zhan T; Breinig M; Winter J; Brügemann D; Leible S; Boutros M
    Genome Biol; 2016 Mar; 17():55. PubMed ID: 27013184
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pooled CRISPR Screens in Drosophila Cells.
    Viswanatha R; Brathwaite R; Hu Y; Li Z; Rodiger J; Merckaert P; Chung V; Mohr SE; Perrimon N
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e111. PubMed ID: 31763777
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells.
    Aregger M; Chandrashekhar M; Tong AHY; Chan K; Moffat J
    Methods Mol Biol; 2019; 1869():169-188. PubMed ID: 30324523
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unpredicted central inversion in a sgRNA flanked by inverted repeats.
    Wang G; Sukumar S
    Mol Biol Rep; 2020 Aug; 47(8):6375-6378. PubMed ID: 32424520
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.
    Doench JG; Fusi N; Sullender M; Hegde M; Vaimberg EW; Donovan KF; Smith I; Tothova Z; Wilen C; Orchard R; Virgin HW; Listgarten J; Root DE
    Nat Biotechnol; 2016 Feb; 34(2):184-191. PubMed ID: 26780180
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Target Identification of Small Molecules Using Large-Scale CRISPR-Cas Mutagenesis Scanning of Essential Genes.
    Kwanten B; Neggers JE; Daelemans D
    Methods Mol Biol; 2022; 2377():43-67. PubMed ID: 34709610
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improved design and analysis of CRISPR knockout screens.
    Chen CH; Xiao T; Xu H; Jiang P; Meyer CA; Li W; Brown M; Liu XS
    Bioinformatics; 2018 Dec; 34(23):4095-4101. PubMed ID: 29868757
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A High-Throughput Strategy for Dissecting Mammalian Genetic Interactions.
    Stockman VB; Ghamsari L; Lasso G; Honig B; Shapira SD; Wang HH
    PLoS One; 2016; 11(12):e0167617. PubMed ID: 27936040
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection of gene cis-regulatory element perturbations in single-cell transcriptomes.
    Yeo GHT; Juez O; Chen Q; Banerjee B; Chu L; Shen MW; Sabry M; Logister I; Sherwood RI; Gifford DK
    PLoS Comput Biol; 2021 Mar; 17(3):e1008789. PubMed ID: 33711017
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions.
    Munoz DM; Cassiani PJ; Li L; Billy E; Korn JM; Jones MD; Golji J; Ruddy DA; Yu K; McAllister G; DeWeck A; Abramowski D; Wan J; Shirley MD; Neshat SY; Rakiec D; de Beaumont R; Weber O; Kauffmann A; McDonald ER; Keen N; Hofmann F; Sellers WR; Schmelzle T; Stegmeier F; Schlabach MR
    Cancer Discov; 2016 Aug; 6(8):900-13. PubMed ID: 27260157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.