These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 32231513)
1. Spike-Train Level Direct Feedback Alignment: Sidestepping Backpropagation for On-Chip Training of Spiking Neural Nets. Lee J; Zhang R; Zhang W; Liu Y; Li P Front Neurosci; 2020; 14():143. PubMed ID: 32231513 [TBL] [Abstract][Full Text] [Related]
2. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training. Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L Front Neurosci; 2021; 15():756876. PubMed ID: 34803591 [TBL] [Abstract][Full Text] [Related]
3. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices. Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH Front Neurosci; 2020; 14():423. PubMed ID: 32733180 [TBL] [Abstract][Full Text] [Related]
4. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule. Hao Y; Huang X; Dong M; Xu B Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843 [TBL] [Abstract][Full Text] [Related]
5. Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks. Wu Y; Deng L; Li G; Zhu J; Shi L Front Neurosci; 2018; 12():331. PubMed ID: 29875621 [TBL] [Abstract][Full Text] [Related]
6. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures. Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K Front Neurosci; 2020; 14():119. PubMed ID: 32180697 [TBL] [Abstract][Full Text] [Related]
7. Rectified Linear Postsynaptic Potential Function for Backpropagation in Deep Spiking Neural Networks. Zhang M; Wang J; Wu J; Belatreche A; Amornpaisannon B; Zhang Z; Miriyala VPK; Qu H; Chua Y; Carlson TE; Li H IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1947-1958. PubMed ID: 34534091 [TBL] [Abstract][Full Text] [Related]
8. Training Deep Spiking Neural Networks Using Backpropagation. Lee JH; Delbruck T; Pfeiffer M Front Neurosci; 2016; 10():508. PubMed ID: 27877107 [TBL] [Abstract][Full Text] [Related]
9. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator. Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning With Spiking Neurons: Opportunities and Challenges. Pfeiffer M; Pfeil T Front Neurosci; 2018; 12():774. PubMed ID: 30410432 [TBL] [Abstract][Full Text] [Related]
11. SPIDE: A purely spike-based method for training feedback spiking neural networks. Xiao M; Meng Q; Zhang Z; Wang Y; Lin Z Neural Netw; 2023 Apr; 161():9-24. PubMed ID: 36736003 [TBL] [Abstract][Full Text] [Related]
12. Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey. Dampfhoffer M; Mesquida T; Valentian A; Anghel L IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):11906-11921. PubMed ID: 37027264 [TBL] [Abstract][Full Text] [Related]
13. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware. Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R Front Neurosci; 2021; 15():694170. PubMed ID: 34867142 [TBL] [Abstract][Full Text] [Related]
14. Implementation of Field-Programmable Gate Array Platform for Object Classification Tasks Using Spike-Based Backpropagated Deep Convolutional Spiking Neural Networks. Kakani V; Li X; Cui X; Kim H; Kim BS; Kim H Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512665 [TBL] [Abstract][Full Text] [Related]
15. An FPGA Implementation of Deep Spiking Neural Networks for Low-Power and Fast Classification. Ju X; Fang B; Yan R; Xu X; Tang H Neural Comput; 2020 Jan; 32(1):182-204. PubMed ID: 31703174 [TBL] [Abstract][Full Text] [Related]
16. A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks. Wu J; Chua Y; Zhang M; Li G; Li H; Tan KC IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):446-460. PubMed ID: 34288879 [TBL] [Abstract][Full Text] [Related]
17. Spiking CMOS-NVM mixed-signal neuromorphic ConvNet with circuit- and training-optimized temporal subsampling. Dorzhigulov A; Saxena V Front Neurosci; 2023; 17():1177592. PubMed ID: 37534034 [TBL] [Abstract][Full Text] [Related]
18. MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks. Yu C; Du Y; Chen M; Wang A; Wang G; Li E Front Neurosci; 2022; 16():945037. PubMed ID: 36203801 [TBL] [Abstract][Full Text] [Related]
19. Chip-In-Loop SNN Proxy Learning: a new method for efficient training of spiking neural networks. Liu Y; Liu T; Hu Y; Liao W; Xing Y; Sheik S; Qiao N Front Neurosci; 2023; 17():1323121. PubMed ID: 38239830 [TBL] [Abstract][Full Text] [Related]
20. Deep learning in spiking neural networks. Tavanaei A; Ghodrati M; Kheradpisheh SR; Masquelier T; Maida A Neural Netw; 2019 Mar; 111():47-63. PubMed ID: 30682710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]