These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32231526)

  • 1. MRI-Induced Heating of Coils for Microscopic Magnetic Stimulation at 1.5 Tesla: An Initial Study.
    Bonmassar G; Serano P
    Front Hum Neurosci; 2020; 14():53. PubMed ID: 32231526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI-induced heating of selected thin wire metallic implants-- laboratory and computational studies-- findings and new questions raised.
    Bassen H; Kainz W; Mendoza G; Kellom T
    Minim Invasive Ther Allied Technol; 2006; 15(2):76-84. PubMed ID: 16754190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations.
    Kazemivalipour E; Vu J; Lin S; Bhusal B; Thanh Nguyen B; Kirsch J; Elahi B; Rosenow J; Atalar E; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6143-6146. PubMed ID: 33019373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI.
    McElcheran CE; Golestanirad L; Iacono MI; Wei PS; Yang B; Anderson KJT; Bonmassar G; Graham SJ
    Sci Rep; 2019 Feb; 9(1):2124. PubMed ID: 30765724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
    Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L
    PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconfigurable MRI technology for low-SAR imaging of deep brain stimulation at 3T: Application in bilateral leads, fully-implanted systems, and surgically modified lead trajectories.
    Kazemivalipour E; Keil B; Vali A; Rajan S; Elahi B; Atalar E; Wald LL; Rosenow J; Pilitsis J; Golestanirad L
    Neuroimage; 2019 Oct; 199():18-29. PubMed ID: 31096058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configurations.
    Golestanirad L; Kazemivalipour E; Lampman D; Habara H; Atalar E; Rosenow J; Pilitsis J; Kirsch J
    Magn Reson Med; 2020 Jun; 83(6):2284-2292. PubMed ID: 31677308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating Accuracy of Numerical Simulations in Predicting Heating of Wire Implants During MRI at 1.5 T.
    Vu J; Bhusal B; Nguyen BT; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6107-6110. PubMed ID: 33019364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A workflow for predicting radiofrequency-induced heating around bilateral deep brain stimulation electrodes in MRI.
    Zulkarnain NIH; Sadeghi-Tarakameh A; Thotland J; Harel N; Eryaman Y
    Med Phys; 2024 Feb; 51(2):1007-1018. PubMed ID: 38153187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability in RF-induced heating of a deep brain stimulation implant across MR systems.
    Baker KB; Tkach JA; Phillips MD; Rezai AR
    J Magn Reson Imaging; 2006 Dec; 24(6):1236-42. PubMed ID: 17078088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of using linearly polarized rotating birdcage transmitters and close-fitting receive arrays in MRI to reduce SAR in the vicinity of deep brain simulation implants.
    Golestanirad L; Keil B; Angelone LM; Bonmassar G; Mareyam A; Wald LL
    Magn Reson Med; 2017 Apr; 77(4):1701-1712. PubMed ID: 27059266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A workflow for predicting temperature increase at the electrical contacts of deep brain stimulation electrodes undergoing MRI.
    Sadeghi-Tarakameh A; Zulkarnain NIH; He X; Atalar E; Harel N; Eryaman Y
    Magn Reson Med; 2022 Nov; 88(5):2311-2325. PubMed ID: 35781696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of coil dimensions and field polarization on RF heating inside a head phantom.
    Kangarlu A; Ibrahim TS; Shellock FG
    Magn Reson Imaging; 2005 Jan; 23(1):53-60. PubMed ID: 15733788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging.
    McElcheran CE; Yang B; Anderson KJ; Golenstani-Rad L; Graham SJ
    PLoS One; 2015; 10(8):e0134379. PubMed ID: 26237218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurostimulation systems for deep brain stimulation: in vitro evaluation of magnetic resonance imaging-related heating at 1.5 tesla.
    Rezai AR; Finelli D; Nyenhuis JA; Hrdlicka G; Tkach J; Sharan A; Rugieri P; Stypulkowski PH; Shellock FG
    J Magn Reson Imaging; 2002 Mar; 15(3):241-50. PubMed ID: 11891968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 7T MR Thermometry technique for validation of system-predicted SAR with a home-built radiofrequency wrist coil.
    Fagan AJ; Jacobs PS; Hulshizer TC; Rossman PJ; Frick MA; Amrami KK; Felmlee JP
    Med Phys; 2021 Feb; 48(2):781-790. PubMed ID: 33294999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An endovaginal MRI array with a forward-looking coil for advanced gynecological cancer brachytherapy procedures: Design and initial results.
    Alipour A; Viswanathan AN; Watkins RD; Elahi H; Loew W; Meyer E; Morcos M; Halperin HR; Schmidt EJ
    Med Phys; 2021 Nov; 48(11):7283-7298. PubMed ID: 34520574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconfigurable MRI coil technology can substantially reduce RF heating of deep brain stimulation implants: First in-vitro study of RF heating reduction in bilateral DBS leads at 1.5 T.
    Golestanirad L; Kazemivalipour E; Keil B; Downs S; Kirsch J; Elahi B; Pilitsis J; Wald LL
    PLoS One; 2019; 14(8):e0220043. PubMed ID: 31390346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WE-G-217A-02: RF Heating of DBS Lead with T/R Head Coil versus T/R Body Coil.
    Lin C; Bernstein M
    Med Phys; 2012 Jun; 39(6Part28):3975. PubMed ID: 28519632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.