These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32231529)

  • 1. Robustness Through Simplicity: A Minimalist Gateway to Neurorobotic Flight.
    Levy SD
    Front Neurorobot; 2020; 14():16. PubMed ID: 32231529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics.
    DeWolf T; Jaworski P; Eliasmith C
    Front Neurorobot; 2020; 14():568359. PubMed ID: 33162886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretable PID parameter tuning for control engineering using general dynamic neural networks: An extensive comparison.
    Günther J; Reichensdörfer E; Pilarski PM; Diepold K
    PLoS One; 2020; 15(12):e0243320. PubMed ID: 33301494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embodied airflow sensing for improved in-gust flight of flapping wing MAVs.
    Wang C; Wang S; De Croon G; Hamaza S
    Front Robot AI; 2022; 9():1060933. PubMed ID: 36569593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wing Kinematics-Based Flight Control Strategy in Insect-Inspired Flight Systems: Deep Reinforcement Learning Gives Solutions and Inspires Controller Design in Flapping MAVs.
    Xue Y; Cai X; Xu R; Liu H
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Radio-Frequency Sensor Wake-Up with Unmanned Aerial Vehicles as an Aerial Gateway.
    Chen J; Dai Z; Chen Z
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30823681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Survey on Swarming With Micro Air Vehicles: Fundamental Challenges and Constraints.
    Coppola M; McGuire KN; De Wagter C; de Croon GCHE
    Front Robot AI; 2020; 7():18. PubMed ID: 33501187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling a bio-inspired miniature blimp using a depth sensing neural-network camera.
    Pham HQ; Singh S; Garratt M; Ravi S
    Bioinspir Biomim; 2024 Jan; 19(2):. PubMed ID: 38227952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments.
    Doukhi O; Lee DJ
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on Aerial Autonomous Docking and Landing Technology of Dual Multi-Rotor UAV.
    Wang L; Jiang X; Wang D; Wang L; Tu Z; Ai J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cyborg Insect Reveals a Function of a Muscle in Free Flight.
    Vo-Doan TT; Dung VT; Sato H
    Cyborg Bionic Syst; 2022; 2022():9780504. PubMed ID: 36285304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending the Evolutionary Robotics approach to flying machines: an application to MAV teams.
    Ruini F; Cangelosi A
    Neural Netw; 2009; 22(5-6):812-21. PubMed ID: 19595566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurorobotic reinforcement learning for domains with parametrical uncertainty.
    Amaya C; von Arnim A
    Front Neurorobot; 2023; 17():1239581. PubMed ID: 37965072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation and Validation of Optimized PID Controller in AGV (Automated Guided Vehicles) Model Using PSO and BAS Algorithms.
    Moshayedi AJ; Li J; Sina N; Chen X; Liao L; Gheisari M; Xie X
    Comput Intell Neurosci; 2022; 2022():7799654. PubMed ID: 36419508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinearity compensation based robust tracking control of nonlinear nonminimum phase hypersonic flight vehicles.
    Ren J; Hang B; Sang M; Hong R; Xu B
    ISA Trans; 2022 Dec; 131():236-245. PubMed ID: 35662518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General Purpose Low-Level Reinforcement Learning Control for Multi-Axis Rotor Aerial Vehicles.
    Pi CH; Dai YW; Hu KC; Cheng S
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergence and Robustness Analysis of Novel Adaptive Multilayer Neural Dynamics-Based Controllers of Multirotor UAVs.
    Zheng L; Zhang Z
    IEEE Trans Cybern; 2021 Jul; 51(7):3710-3723. PubMed ID: 31295138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single Neural Adaptive PID Control for Small UAV Micro-Turbojet Engine.
    Tang W; Wang L; Gu J; Gu Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-Inspired Spiking Neural Network Controller for a Neurorobotic Whisker System.
    Antonietti A; Geminiani A; Negri E; D'Angelo E; Casellato C; Pedrocchi A
    Front Neurorobot; 2022; 16():817948. PubMed ID: 35770277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Cattle Using Drones and Convolutional Neural Networks.
    Rivas A; Chamoso P; González-Briones A; Corchado JM
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29954080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.