BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 32231665)

  • 1. Pulmonary Pathogens Adapt to Immune Signaling Metabolites in the Airway.
    Riquelme SA; Wong Fok Lung T; Prince A
    Front Immunol; 2020; 11():385. PubMed ID: 32231665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunometabolites Drive Bacterial Adaptation to the Airway.
    Tomlinson KL; Prince AS; Wong Fok Lung T
    Front Immunol; 2021; 12():790574. PubMed ID: 34899759
    [No Abstract]   [Full Text] [Related]  

  • 3. Association of Diverse Staphylococcus aureus Populations with Pseudomonas aeruginosa Coinfection and Inflammation in Cystic Fibrosis Airway Infection.
    Wieneke MK; Dach F; Neumann C; Görlich D; Kaese L; Thißen T; Dübbers A; Kessler C; Große-Onnebrink J; Küster P; Schültingkemper H; Schwartbeck B; Roth J; Nofer JR; Treffon J; Posdorfer J; Boecken JM; Strake M; Abdo M; Westhues S; Kahl BC
    mSphere; 2021 Jun; 6(3):e0035821. PubMed ID: 34160233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Small RNA ErsA Plays a Role in the Regulatory Network of Pseudomonas aeruginosa Pathogenicity in Airway Infections.
    Ferrara S; Rossi A; Ranucci S; De Fino I; Bragonzi A; Cigana C; Bertoni G
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33055260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of Pseudomonas aeruginosa in Cystic Fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection.
    Baldan R; Cigana C; Testa F; Bianconi I; De Simone M; Pellin D; Di Serio C; Bragonzi A; Cirillo DM
    PLoS One; 2014; 9(3):e89614. PubMed ID: 24603807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Airway immunometabolites fuel Pseudomonas aeruginosa infection.
    Riquelme SA; Prince A
    Respir Res; 2020 Dec; 21(1):326. PubMed ID: 33302964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas aeruginosa and Klebsiella pneumoniae Adaptation to Innate Immune Clearance Mechanisms in the Lung.
    Riquelme SA; Ahn D; Prince A
    J Innate Immun; 2018; 10(5-6):442-454. PubMed ID: 29617698
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Orazi G; O'Toole GA
    mBio; 2017 Jul; 8(4):. PubMed ID: 28720732
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Kiedrowski MR; Gaston JR; Kocak BR; Coburn SL; Lee S; Pilewski JM; Myerburg MM; Bomberger JM
    mSphere; 2018 Aug; 3(4):. PubMed ID: 30111629
    [No Abstract]   [Full Text] [Related]  

  • 10. Staphylococcus aureus Impacts Pseudomonas aeruginosa Chronic Respiratory Disease in Murine Models.
    Cigana C; Bianconi I; Baldan R; De Simone M; Riva C; Sipione B; Rossi G; Cirillo DM; Bragonzi A
    J Infect Dis; 2018 Mar; 217(6):933-942. PubMed ID: 29216403
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Yadav MK; Chae SW; Go YY; Im GJ; Song JJ
    Front Cell Infect Microbiol; 2017; 7():125. PubMed ID: 28459043
    [No Abstract]   [Full Text] [Related]  

  • 12. Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting airways chronic infection.
    Bianconi I; Milani A; Cigana C; Paroni M; Levesque RC; Bertoni G; Bragonzi A
    PLoS Pathog; 2011 Feb; 7(2):e1001270. PubMed ID: 21304889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous Alginate Protects Staphylococcus aureus from Killing by Pseudomonas aeruginosa.
    Price CE; Brown DG; Limoli DH; Phelan VV; O'Toole GA
    J Bacteriol; 2020 Mar; 202(8):. PubMed ID: 31792010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa.
    Lovewell RR; Patankar YR; Berwin B
    Am J Physiol Lung Cell Mol Physiol; 2014 Apr; 306(7):L591-603. PubMed ID: 24464809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Infections of the respiratory tract with Pseudomonas aeruginosa in cystic fibrosis].
    Winkler U; Wingender J; Jäger KE
    Klin Wochenschr; 1985 Jun; 63(11):490-8. PubMed ID: 3925219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence and persistence of Pseudomonas aeruginosa in the cystic fibrosis airway.
    Fick RB; Sonoda F; Hornick DB
    Semin Respir Infect; 1992 Sep; 7(3):168-78. PubMed ID: 1475541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-infection with Pseudomonas aeruginosa impacts virulence of Staphylococcus aureus and intensifies the severity of infection.
    Shoaib A; Lone NA; Yi X
    Pak J Pharm Sci; 2020 Sep; 33(5):1933-1937. PubMed ID: 33824098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling the early events of Pseudomonas aeruginosa adaptation in cystic fibrosis airway environment using a long-term in vitro maintenance.
    Sousa AM; Monteiro R; Pereira MO
    Int J Med Microbiol; 2018 Dec; 308(8):1053-1064. PubMed ID: 30377031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients.
    Meluleni GJ; Grout M; Evans DJ; Pier GB
    J Immunol; 1995 Aug; 155(4):2029-38. PubMed ID: 7636254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microenvironmental characteristics and physiology of biofilms in chronic infections of CF patients are strongly affected by the host immune response.
    Jensen PØ; Kolpen M; Kragh KN; Kühl M
    APMIS; 2017 Apr; 125(4):276-288. PubMed ID: 28407427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.