These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32232024)

  • 21. Exogenous addition of H
    Mulat DG; Mosbæk F; Ward AJ; Polag D; Greule M; Keppler F; Nielsen JL; Feilberg A
    Waste Manag; 2017 Oct; 68():146-156. PubMed ID: 28623019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined Syngas and Hydrogen Production using Gas Switching Technology.
    Ugwu A; Zaabout A; Donat F; van Diest G; Albertsen K; Müller C; Amini S
    Ind Eng Chem Res; 2021 Mar; 60(9):3516-3531. PubMed ID: 33840889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.
    Buelens LC; Galvita VV; Poelman H; Detavernier C; Marin GB
    Science; 2016 Oct; 354(6311):449-452. PubMed ID: 27738013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.
    Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK
    J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated CO
    Bhaskaran A; Singh SA; Reddy BM; Roy S
    Langmuir; 2024 Jul; ():. PubMed ID: 38978485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental and energetic analysis of coupling a biogas combined cycle power plant with carbon capture, organic Rankine cycles and CO
    Esquivel-Patiño GG; Nápoles-Rivera F
    J Environ Manage; 2021 Dec; 300():113746. PubMed ID: 34562822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen production by the steam reforming of synthetic biogas in atmospheric-pressure microwave (915 MHz) plasma.
    Hrycak B; Mizeraczyk J; Czylkowski D; Dors M; Budnarowska M; Jasiński M
    Sci Rep; 2023 Feb; 13(1):2204. PubMed ID: 36750627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of H2 and CO2 to CH4 and acetate in fed-batch biogas reactors by mixed biogas community: a novel route for the power-to-gas concept.
    Szuhaj M; Ács N; Tengölics R; Bodor A; Rákhely G; Kovács KL; Bagi Z
    Biotechnol Biofuels; 2016; 9():102. PubMed ID: 27168764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel concept for syngas biomethanation by two-stage process: Focusing on the selective conversion of syngas to acetate.
    Luo G; Jing Y; Lin Y; Zhang S; An D
    Sci Total Environ; 2018 Dec; 645():1194-1200. PubMed ID: 30248844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lean-rich combustion characteristics of methane and ammonia in the combined porous structures for carbon reduction and alternative fuel development.
    Dai H; Gao X; Liu C; Dai H; Zhang L
    Sci Total Environ; 2024 Aug; 938():173375. PubMed ID: 38797416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coffee Pulp Gasification for Syngas Obtention and Methane Production Simulation Using Ni Catalysts Supported on Al
    Aristizábal-Alzate CE; Dongil AB; Romero-Sáez M
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biogas Reforming to Syngas: A Review.
    Zhao X; Joseph B; Kuhn J; Ozcan S
    iScience; 2020 May; 23(5):101082. PubMed ID: 32380422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy-Efficient Routes for the Production of Gasoline from Biogas and Pyrolysis Oil-Process Design and Life-Cycle Assessment.
    Sundaram S; Kolb G; Hessel V; Wang Q
    Ind Eng Chem Res; 2017 Mar; 56(12):3373-3387. PubMed ID: 28405056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of pressure and composition on Raman spectra of CO-H
    Petrov DV; Matrosov II; Zaripov AR; Maznoy AS
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 215():363-370. PubMed ID: 30852284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon and energy footprint of the hydrate-based biogas upgrading process integrated with CO
    Castellani B; Rinaldi S; Bonamente E; Nicolini A; Rossi F; Cotana F
    Sci Total Environ; 2018 Feb; 615():404-411. PubMed ID: 28988076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasma-Driven Efficient Conversion of CO
    Han Y; Fan G; Guo Y; Guo S; Ding J; Han C; Gao Y; Zhang J; Gu X; Wu L
    Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202406007. PubMed ID: 38687057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conversion mechanism of thermal plasma-enhanced CH
    Zhou Y; Chu R; Fan L; Zhao J; Li W; Jiang X; Meng X; Li Y; Yu S; Wan Y
    Sci Total Environ; 2023 Mar; 866():161453. PubMed ID: 36626987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nutrient composition of culture media induces different patterns of CO
    Choix FJ; Polster E; Corona-González RI; Snell-Castro R; Méndez-Acosta HO
    Bioprocess Biosyst Eng; 2017 Dec; 40(12):1733-1742. PubMed ID: 28801770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy-efficient syngas production through catalytic oxy-methane reforming reactions.
    Choudhary TV; Choudhary VR
    Angew Chem Int Ed Engl; 2008; 47(10):1828-47. PubMed ID: 18188848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.