BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 32232082)

  • 1. Recent advances in materials and flexible electronics for peripheral nerve interfaces.
    Bettinger CJ
    Bioelectron Med; 2018; 4():6. PubMed ID: 32232082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable gold nanowire-based cuff electrodes for low-voltage peripheral nerve stimulation.
    Lienemann S; Zötterman J; Farnebo S; Tybrandt K
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33957608
    [No Abstract]   [Full Text] [Related]  

  • 4. Tissue-Engineered Peripheral Nerve Interfaces.
    Spearman BS; Desai VH; Mobini S; McDermott MD; Graham JB; Otto KJ; Judy JW; Schmidt CE
    Adv Funct Mater; 2018 Mar; 28(12):. PubMed ID: 37829558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid Crystalline Polymers: Opportunities to Shape Neural Interfaces.
    Rihani R; Tasnim N; Javed M; Usoro JO; D'Souza TM; Ware TH; Pancrazio JJ
    Neuromodulation; 2022 Dec; 25(8):1259-1267. PubMed ID: 33501705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine.
    Balakrishnan G; Song J; Mou C; Bettinger CJ
    Adv Mater; 2022 Mar; 34(10):e2106787. PubMed ID: 34751987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraflexible and Stretchable Intrafascicular Peripheral Nerve Recording Device with Axon-Dimension, Cuff-Less Microneedle Electrode Array.
    Yan D; Jiman AA; Bottorff EC; Patel PR; Meli D; Welle EJ; Ratze DC; Havton LA; Chestek CA; Kemp SWP; Bruns TM; Yoon E; Seymour JP
    Small; 2022 May; 18(21):e2200311. PubMed ID: 35491522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces.
    Song KI; Seo H; Seong D; Kim S; Yu KJ; Kim YC; Kim J; Kwon SJ; Han HS; Youn I; Lee H; Son D
    Nat Commun; 2020 Aug; 11(1):4195. PubMed ID: 32826916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation.
    Dong R; Wang L; Li Z; Jiao J; Wu Y; Feng Z; Wang X; Chen M; Cui C; Lu Y; Jiang X
    ACS Nano; 2024 Jan; 18(2):1702-1713. PubMed ID: 38165231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface Design for Stretchable Electronic Devices.
    Kim DW; Kong M; Jeong U
    Adv Sci (Weinh); 2021 Apr; 8(8):2004170. PubMed ID: 33898192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hydrogel-Based Microfluidic Nerve Cuff for Neuromodulation of Peripheral Nerves.
    Thakur R; Aplin FP; Fridman GY
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for interface issues and challenges of neural electrodes.
    Liang C; Liu Y; Lu W; Tian G; Zhao Q; Yang D; Sun J; Qi D
    Nanoscale; 2022 Mar; 14(9):3346-3366. PubMed ID: 35179152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretchable Tissue-Like Gold Nanowire Composites with Long-Term Stability for Neural Interfaces.
    Seufert L; Elmahmoudy M; Theunis C; Lienemann S; Li Y; Mohammadi M; Boda U; Carnicer-Lombarte A; Kroon R; Persson POÅ; Rahmanudin A; Donahue MJ; Farnebo S; Tybrandt K
    Small; 2024 Jun; ():e2402214. PubMed ID: 38944890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes.
    Vasudevan S; Patel K; Welle C
    J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in neural interfaces-Materials chemistry to clinical translation.
    Bettinger CJ; Ecker M; Kozai TDY; Malliaras GG; Meng E; Voit W
    MRS Bull; 2020 Aug; 45(8):655-668. PubMed ID: 34690420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible 3D carbon nanotubes cuff electrodes as a peripheral nerve interface.
    Tian P; Yi W; Chen C; Hu J; Qi J; Zhang B; Cheng MM
    Biomed Microdevices; 2018 Feb; 20(1):21. PubMed ID: 29460230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.