These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 32232086)
1. Mapping the Brain's electric fields with Magnetoelectric nanoparticles. Guduru R; Liang P; Yousef M; Horstmyer J; Khizroev S Bioelectron Med; 2018; 4():10. PubMed ID: 32232086 [TBL] [Abstract][Full Text] [Related]
2. Controlling action potentials with magnetoelectric nanoparticles. Zhang E; Shotbolt M; Chang CY; Scott-Vandeusen A; Chen S; Liang P; Radu D; Khizroev S Brain Stimul; 2024; 17(5):1005-1017. PubMed ID: 39209064 [TBL] [Abstract][Full Text] [Related]
3. Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles. Smith IT; Zhang E; Yildirim YA; Campos MA; Abdel-Mottaleb M; Yildirim B; Ramezani Z; Andre VL; Scott-Vandeusen A; Liang P; Khizroev S Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Mar; 15(2):e1849. PubMed ID: 36056752 [TBL] [Abstract][Full Text] [Related]
4. In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles. Bok I; Haber I; Qu X; Hai A Sci Rep; 2022 May; 12(1):8386. PubMed ID: 35589877 [TBL] [Abstract][Full Text] [Related]
5. Multiferroic coreshell magnetoelectric nanoparticles as NMR sensitive nanoprobes for cancer cell detection. Nagesetti A; Rodzinski A; Stimphil E; Stewart T; Khanal C; Wang P; Guduru R; Liang P; Agoulnik I; Horstmyer J; Khizroev S Sci Rep; 2017 May; 7(1):1610. PubMed ID: 28487517 [TBL] [Abstract][Full Text] [Related]
6. Strong magnetoelectric coupling effect in BaTiO Gao R; Zhang Q; Xu Z; Wang Z; Cai W; Chen G; Deng X; Cao X; Luo X; Fu C Nanoscale; 2018 Jul; 10(25):11750-11759. PubMed ID: 29923583 [TBL] [Abstract][Full Text] [Related]
7. Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response. Fiocchi S; Chiaramello E; Marrella A; Suarato G; Bonato M; Parazzini M; Ravazzani P PLoS One; 2022; 17(9):e0274676. PubMed ID: 36149898 [TBL] [Abstract][Full Text] [Related]
8. Size-dependent intranasal administration of magnetoelectric nanoparticles for targeted brain localization. Pardo M; Roberts ER; Pimentel K; Yildirim YA; Navarrete B; Wang P; Zhang E; Liang P; Khizroev S Nanomedicine; 2021 Feb; 32():102337. PubMed ID: 33197627 [TBL] [Abstract][Full Text] [Related]
9. Modeling the effect of magnetoelectric nanoparticles on neuronal electrical activity: An analog circuit approach. Ramezani Z; André V; Khizroev S Biointerphases; 2024 May; 19(3):. PubMed ID: 38738941 [TBL] [Abstract][Full Text] [Related]
10. Nonvolatile electric-field control of magnetization in a Y-type hexaferrite. Shen S; Chai Y; Sun Y Sci Rep; 2015 Feb; 5():8254. PubMed ID: 25653008 [TBL] [Abstract][Full Text] [Related]
11. In Vivo Wireless Brain Stimulation via Non-invasive and Targeted Delivery of Magnetoelectric Nanoparticles. Nguyen T; Gao J; Wang P; Nagesetti A; Andrews P; Masood S; Vriesman Z; Liang P; Khizroev S; Jin X Neurotherapeutics; 2021 Jul; 18(3):2091-2106. PubMed ID: 34131858 [TBL] [Abstract][Full Text] [Related]
12. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field. Geng Y; Wu W Rev Sci Instrum; 2014 May; 85(5):053901. PubMed ID: 24880381 [TBL] [Abstract][Full Text] [Related]
13. Magnetoelectric nanoparticles shape modulates their electrical output. Marrella A; Suarato G; Fiocchi S; Chiaramello E; Bonato M; Parazzini M; Ravazzani P Front Bioeng Biotechnol; 2023; 11():1219777. PubMed ID: 37691903 [TBL] [Abstract][Full Text] [Related]
14. Multiscale Modeling of Magnetoelectric Nanoparticles for the Analysis of Spatially Selective Neural Stimulation. Kumari P; Wunderlich H; Milojkovic A; López JE; Fossati A; Jahanshahi A; Kozielski K Adv Healthc Mater; 2024 Sep; 13(24):e2302871. PubMed ID: 38262344 [TBL] [Abstract][Full Text] [Related]
15. Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients. Dhavalikar R; Rinaldi C J Magn Magn Mater; 2016 Dec; 419():267-273. PubMed ID: 28943706 [TBL] [Abstract][Full Text] [Related]
16. Biodistribution and clearance of magnetoelectric nanoparticles for nanomedical applications using energy dispersive spectroscopy. Hadjikhani A; Rodzinski A; Wang P; Nagesetti A; Guduru R; Liang P; Runowicz C; Shahbazmohamadi S; Khizroev S Nanomedicine (Lond); 2017 Aug; 12(15):1801-1822. PubMed ID: 28705034 [TBL] [Abstract][Full Text] [Related]
17. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related]
18. Homogenization method for microscopic characterization of the composite magnetoelectric multiferroics. Jayachandran KP; Guedes JM; Rodrigues HC Sci Rep; 2020 Jan; 10(1):1276. PubMed ID: 31992781 [TBL] [Abstract][Full Text] [Related]
19. Application of Linear Gradient Magnetic Field in Arterial Profile Scanning Imaging. Liu Y; Liu G; Yang D; Xu B Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823785 [No Abstract] [Full Text] [Related]
20. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Chu YH; Martin LW; Holcomb MB; Gajek M; Han SJ; He Q; Balke N; Yang CH; Lee D; Hu W; Zhan Q; Yang PL; Fraile-Rodríguez A; Scholl A; Wang SX; Ramesh R Nat Mater; 2008 Jun; 7(6):478-82. PubMed ID: 18438412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]