These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32232370)

  • 1. Efficient and risk-reduced genome editing using double nicks enhanced by bacterial recombination factors in multiple species.
    He X; Chen W; Liu Z; Yu G; Chen Y; Cai YJ; Sun L; Xu W; Zhong L; Gao C; Chen J; Zhang M; Yang S; Yao Y; Zhang Z; Ma F; Zhang CC; Lu HP; Yu B; Cheng TL; Qiu J; Sheng Q; Zhou HM; Lv ZR; Yan J; Zhou Y; Qiu Z; Cui Z; Zhang X; Meng A; Sun Q; Yang Y
    Nucleic Acids Res; 2020 Jun; 48(10):e57. PubMed ID: 32232370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem Paired Nicking Promotes Precise Genome Editing with Scarce Interference by p53.
    Hyodo T; Rahman ML; Karnan S; Ito T; Toyoda A; Ota A; Wahiduzzaman M; Tsuzuki S; Okada Y; Hosokawa Y; Konishi H
    Cell Rep; 2020 Jan; 30(4):1195-1207.e7. PubMed ID: 31995758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases.
    Chu C; Yang Z; Yang J; Yan L; Si C; Kang Y; Chen Z; Chen Y; Ji W; Niu Y
    BMC Biotechnol; 2019 Jan; 19(1):7. PubMed ID: 30646876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
    Zhang Y; Huang H; Zhang B; Lin S
    Methods Cell Biol; 2016; 135():107-20. PubMed ID: 27443922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental strategies to achieve efficient targeted knock-in via tandem paired nicking.
    Rahman ML; Hyodo T; Karnan S; Ota A; Hasan MN; Mihara Y; Wahiduzzaman M; Tsuzuki S; Hosokawa Y; Konishi H
    Sci Rep; 2021 Nov; 11(1):22627. PubMed ID: 34799652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise genome editing by homologous recombination.
    Hoshijima K; Jurynec MJ; Grunwald DJ
    Methods Cell Biol; 2016; 135():121-47. PubMed ID: 27443923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise and efficient nucleotide substitution near genomic nick via noncanonical homology-directed repair.
    Nakajima K; Zhou Y; Tomita A; Hirade Y; Gurumurthy CB; Nakada S
    Genome Res; 2018 Feb; 28(2):223-230. PubMed ID: 29273627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise A•T to G•C base editing in the zebrafish genome.
    Qin W; Lu X; Liu Y; Bai H; Li S; Lin S
    BMC Biol; 2018 Nov; 16(1):139. PubMed ID: 30458760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish.
    Kawahara A
    Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for In Vivo Genome Editing in Nondividing Cells.
    Nami F; Basiri M; Satarian L; Curtiss C; Baharvand H; Verfaillie C
    Trends Biotechnol; 2018 Aug; 36(8):770-786. PubMed ID: 29685818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous precise editing of multiple genes in human cells.
    Riesenberg S; Chintalapati M; Macak D; Kanis P; Maricic T; Pääbo S
    Nucleic Acids Res; 2019 Nov; 47(19):e116. PubMed ID: 31392986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks.
    Paix A; Folkmann A; Goldman DH; Kulaga H; Grzelak MJ; Rasoloson D; Paidemarry S; Green R; Reed RR; Seydoux G
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):E10745-E10754. PubMed ID: 29183983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Quantitative Evaluation of CRISPR Genome Editing by TIDE and TIDER.
    Brinkman EK; van Steensel B
    Methods Mol Biol; 2019; 1961():29-44. PubMed ID: 30912038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Mediated Base Editing without DNA Double-Strand Breaks.
    Plosky BS
    Mol Cell; 2016 May; 62(4):477-8. PubMed ID: 27203175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.
    Prykhozhij SV; Fuller C; Steele SL; Veinotte CJ; Razaghi B; Robitaille JM; McMaster CR; Shlien A; Malkin D; Berman JN
    Nucleic Acids Res; 2018 Sep; 46(17):e102. PubMed ID: 29905858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52.
    Shao S; Ren C; Liu Z; Bai Y; Chen Z; Wei Z; Wang X; Zhang Z; Xu K
    Int J Biochem Cell Biol; 2017 Nov; 92():43-52. PubMed ID: 28928041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing.
    Chadwick AC; Wang X; Musunuru K
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1741-1747. PubMed ID: 28751571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.