These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32232412)

  • 1. Distortion of double-stranded DNA structure by the binding of the restriction DNA glycosylase R.PabI.
    Miyazono KI; Wang D; Ito T; Tanokura M
    Nucleic Acids Res; 2020 May; 48(9):5106-5118. PubMed ID: 32232412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrameric structure of the restriction DNA glycosylase R.PabI in complex with nonspecific double-stranded DNA.
    Wang D; Miyazono KI; Tanokura M
    Sci Rep; 2016 Oct; 6():35197. PubMed ID: 27731370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sequence-specific DNA glycosylase mediates restriction-modification in Pyrococcus abyssi.
    Miyazono K; Furuta Y; Watanabe-Matsui M; Miyakawa T; Ito T; Kobayashi I; Tanokura M
    Nat Commun; 2014; 5():3178. PubMed ID: 24458096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission of the PabI family of restriction DNA glycosylase genes: mobility and long-term inheritance.
    Kojima KK; Kobayashi I
    BMC Genomics; 2015 Oct; 16():817. PubMed ID: 26481899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restriction glycosylases: involvement of endonuclease activities in the restriction process.
    Zhang Y; Matsuzaka T; Yano H; Furuta Y; Nakano T; Ishikawa K; Fukuyo M; Takahashi N; Suzuki Y; Sugano S; Ide H; Kobayashi I
    Nucleic Acids Res; 2017 Feb; 45(3):1392-1403. PubMed ID: 28180312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restriction-modification system with methyl-inhibited base excision and abasic-site cleavage activities.
    Fukuyo M; Nakano T; Zhang Y; Furuta Y; Ishikawa K; Watanabe-Matsui M; Yano H; Hamakawa T; Ide H; Kobayashi I
    Nucleic Acids Res; 2015 Mar; 43(5):2841-52. PubMed ID: 25697504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure and DNA cleavage mechanism of the restriction DNA glycosylase R.CcoLI from Campylobacter coli.
    Miyazono KI; Wang D; Ito T; Tanokura M
    Sci Rep; 2021 Jan; 11(1):859. PubMed ID: 33441677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel protein fold discovered in the PabI family of restriction enzymes.
    Miyazono K; Watanabe M; Kosinski J; Ishikawa K; Kamo M; Sawasaki T; Nagata K; Bujnicki JM; Endo Y; Tanokura M; Kobayashi I
    Nucleic Acids Res; 2007; 35(6):1908-18. PubMed ID: 17332011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of Escherichia coli AlkA in complex with undamaged DNA.
    Bowman BR; Lee S; Wang S; Verdine GL
    J Biol Chem; 2010 Nov; 285(46):35783-91. PubMed ID: 20843803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.
    Lingaraju GM; Prota AE; Winkler FK
    DNA Repair (Amst); 2009 Jul; 8(7):857-64. PubMed ID: 19410520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure.
    Lingaraju GM; Sartori AA; Kostrewa D; Prota AE; Jiricny J; Winkler FK
    Structure; 2005 Jan; 13(1):87-98. PubMed ID: 15642264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro.
    de Faria RC; Vila-Nova LG; Bitar M; Resende BC; Arantes LS; Rebelato AB; Azevedo VAC; Franco GR; Machado CR; Santos LLD; de Oliveira Lopes D
    Infect Genet Evol; 2016 Oct; 44():318-329. PubMed ID: 27456281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of quinomycin antibiotic UK-65,662 to DNA: 1H-n.m.r. studies of drug-induced changes in DNA conformation in complexes with d(ACGT)2 and d(GACGTC)2.
    Searle MS
    Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):967-79. PubMed ID: 7818504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The origins of high-affinity enzyme binding to an extrahelical DNA base.
    Krosky DJ; Song F; Stivers JT
    Biochemistry; 2005 Apr; 44(16):5949-59. PubMed ID: 15835884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.
    Fromme JC; Banerjee A; Huang SJ; Verdine GL
    Nature; 2004 Feb; 427(6975):652-6. PubMed ID: 14961129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkylpurine glycosylase D employs DNA sculpting as a strategy to extrude and excise damaged bases.
    Kossmann B; Ivanov I
    PLoS Comput Biol; 2014 Jul; 10(7):e1003704. PubMed ID: 24992034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of a DNA glycosylase searching for lesions.
    Banerjee A; Santos WL; Verdine GL
    Science; 2006 Feb; 311(5764):1153-7. PubMed ID: 16497933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).
    Metz AH; Hollis T; Eichman BF
    EMBO J; 2007 May; 26(9):2411-20. PubMed ID: 17410210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.
    Kuznetsov NA; Kiryutin AS; Kuznetsova AA; Panov MS; Barsukova MO; Yurkovskaya AV; Fedorova OS
    J Biomol Struct Dyn; 2017 Apr; 35(5):950-967. PubMed ID: 27025273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Standard role for a conserved aspartate or more direct involvement in deglycosylation? An ONIOM and MD investigation of adenine-DNA glycosylase.
    Kellie JL; Wilson KA; Wetmore SD
    Biochemistry; 2013 Dec; 52(48):8753-65. PubMed ID: 24168684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.