BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

746 related articles for article (PubMed ID: 32232911)

  • 21. Non-canonical DNA/RNA structures during Transcription-Coupled Double-Strand Break Repair: Roadblocks or Bona fide repair intermediates?
    Puget N; Miller KM; Legube G
    DNA Repair (Amst); 2019 Sep; 81():102661. PubMed ID: 31331819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcription-coupled homologous recombination after oxidative damage.
    Wei L; Levine AS; Lan L
    DNA Repair (Amst); 2016 Aug; 44():76-80. PubMed ID: 27233112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of DNA Double-Strand Break Repair by Non-Coding RNAs.
    Thapar R
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30373256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair.
    Ohle C; Tesorero R; Schermann G; Dobrev N; Sinning I; Fischer T
    Cell; 2016 Nov; 167(4):1001-1013.e7. PubMed ID: 27881299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae.
    Yi DG; Kim MJ; Choi JE; Lee J; Jung J; Huh WK; Chung WH
    Free Radic Biol Med; 2016 Dec; 101():424-433. PubMed ID: 27838435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perfecting DNA double-strand break repair on transcribed chromatin.
    Tan XY; Huen MSY
    Essays Biochem; 2020 Oct; 64(5):705-719. PubMed ID: 32309851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cohesin/HUSH- and LINC-dependent pathway controls ribosomal DNA double-strand break repair.
    Marnef A; Finoux AL; Arnould C; Guillou E; Daburon V; Rocher V; Mangeat T; Mangeot PE; Ricci EP; Legube G
    Genes Dev; 2019 Sep; 33(17-18):1175-1190. PubMed ID: 31395742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites.
    Yasuda T; Kagawa W; Ogi T; Kato TA; Suzuki T; Dohmae N; Takizawa K; Nakazawa Y; Genet MD; Saotome M; Hama M; Konishi T; Nakajima NI; Hazawa M; Tomita M; Koike M; Noshiro K; Tomiyama K; Obara C; Gotoh T; Ui A; Fujimori A; Nakayama F; Hanaoka F; Sugasawa K; Okayasu R; Jeggo PA; Tajima K
    PLoS Genet; 2018 Mar; 14(3):e1007277. PubMed ID: 29590107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts.
    Hansen RK; Mund A; Poulsen SL; Sandoval M; Klement K; Tsouroula K; Tollenaere MA; Räschle M; Soria R; Offermanns S; Worzfeld T; Grosse R; Brandt DT; Rozell B; Mann M; Cole F; Soutoglou E; Goodarzi AA; Daniel JA; Mailand N; Bekker-Jensen S
    Nat Cell Biol; 2016 Dec; 18(12):1357-1366. PubMed ID: 27820601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of DNA break repair by transcription and RNA.
    Ouyang J; Lan L; Zou L
    Sci China Life Sci; 2017 Oct; 60(10):1081-1086. PubMed ID: 29075944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ctf18 is required for homologous recombination-mediated double-strand break repair.
    Ogiwara H; Ohuchi T; Ui A; Tada S; Enomoto T; Seki M
    Nucleic Acids Res; 2007; 35(15):4989-5000. PubMed ID: 17636314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impaired cohesion and homologous recombination during replicative aging in budding yeast.
    Pal S; Postnikoff SD; Chavez M; Tyler JK
    Sci Adv; 2018 Feb; 4(2):eaaq0236. PubMed ID: 29441364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impact of heterochromatin on DSB repair.
    Goodarzi AA; Noon AT; Jeggo PA
    Biochem Soc Trans; 2009 Jun; 37(Pt 3):569-76. PubMed ID: 19442252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulatory and Functional Involvement of Long Non-Coding RNAs in DNA Double-Strand Break Repair Mechanisms.
    Papaspyropoulos A; Lagopati N; Mourkioti I; Angelopoulou A; Kyriazis S; Liontos M; Gorgoulis V; Kotsinas A
    Cells; 2021 Jun; 10(6):. PubMed ID: 34203749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair.
    Ui A; Nagaura Y; Yasui A
    Mol Cell; 2015 May; 58(3):468-82. PubMed ID: 25921070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax.
    Goodarzi AA; Jeggo P; Lobrich M
    DNA Repair (Amst); 2010 Dec; 9(12):1273-82. PubMed ID: 21036673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability.
    Sollier J; Stork CT; García-Rubio ML; Paulsen RD; Aguilera A; Cimprich KA
    Mol Cell; 2014 Dec; 56(6):777-85. PubMed ID: 25435140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Break-induced RNA-DNA hybrids (BIRDHs) in homologous recombination: friend or foe?
    Gómez-González B; Aguilera A
    EMBO Rep; 2023 Dec; 24(12):e57801. PubMed ID: 37818834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability maintenance: the trans-S double-strand break repair model.
    Delacôte F; Lopez BS
    Cell Cycle; 2008 Jan; 7(1):33-8. PubMed ID: 18196958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The main repair pathways of double-strand breaks in the genomic DNA and interactions between them].
    Litvinov SV
    Tsitol Genet; 2014; 48(3):64-77. PubMed ID: 25019146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.