These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Highly Efficient Peptide-Based Click Chemistry for Proteomic Profiling of Nascent Proteins. Sun N; Wang Y; Wang J; Sun W; Yang J; Liu N Anal Chem; 2020 Jun; 92(12):8292-8297. PubMed ID: 32434323 [TBL] [Abstract][Full Text] [Related]
6. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA-Protein Cross-Linking. Dadová J; Vrábel M; Adámik M; Brázdová M; Pohl R; Fojta M; Hocek M Chemistry; 2015 Nov; 21(45):16091-102. PubMed ID: 26377361 [TBL] [Abstract][Full Text] [Related]
7. Decoration of Coiled-Coil Peptides with N-Cysteine Peptide Thioesters As Cyclic Peptide Precursors Using Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) Click Reaction. Rink WM; Thomas F Org Lett; 2018 Dec; 20(23):7493-7497. PubMed ID: 30407016 [TBL] [Abstract][Full Text] [Related]
8. Cys-Cys and Cys-Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents. Ceballos J; Grinhagena E; Sangouard G; Heinis C; Waser J Angew Chem Int Ed Engl; 2021 Apr; 60(16):9022-9031. PubMed ID: 33450121 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics. Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435 [TBL] [Abstract][Full Text] [Related]
11. Cysteine-Cysteine Cross-Conjugation of both Peptides and Proteins with a Bifunctional Hypervalent Iodine-Electrophilic Reagent. Koutsopetras I; Mishra AK; Benazza R; Hernandez-Alba O; Cianférani S; Chaubet G; Nicolai S; Waser J Chemistry; 2023 Dec; 29(70):e202302689. PubMed ID: 37712523 [TBL] [Abstract][Full Text] [Related]
12. One-Step Derivatization of Reducing Oligosaccharides for Rapid and Live-Cell-Compatible Chelation-Assisted CuAAC Conjugation. Machida T; Winssinger N Chembiochem; 2016 May; 17(9):811-5. PubMed ID: 26852736 [TBL] [Abstract][Full Text] [Related]
14. 'Click' glycosylation of peptides through cysteine propargylation and CuAAC. Lamandé-Langle S; Collet C; Hensienne R; Vala C; Chrétien F; Chapleur Y; Mohamadi A; Lacolley P; Regnault V Bioorg Med Chem; 2014 Dec; 22(23):6672-6683. PubMed ID: 25457125 [TBL] [Abstract][Full Text] [Related]
15. Extent of the Oxidative Side Reactions to Peptides and Proteins During the CuAAC Reaction. Li S; Cai H; He J; Chen H; Lam S; Cai T; Zhu Z; Bark SJ; Cai C Bioconjug Chem; 2016 Oct; 27(10):2315-2322. PubMed ID: 27583984 [TBL] [Abstract][Full Text] [Related]
17. Site-Specific Modification of Proteins through N-Terminal Azide Labeling and a Chelation-Assisted CuAAC Reaction. Inoue N; Onoda A; Hayashi T Bioconjug Chem; 2019 Sep; 30(9):2427-2434. PubMed ID: 31436410 [TBL] [Abstract][Full Text] [Related]
18. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions. Zhang X; Liu P; Zhu L Molecules; 2016 Dec; 21(12):. PubMed ID: 27941684 [TBL] [Abstract][Full Text] [Related]
19. Cysteine as a Monothiol Reducing Agent to Prevent Copper-Mediated Oxidation of Interferon Beta During PEGylation by CuAAC. Nairn NW; Bariola PA; Graddis TJ; VanBrunt MP; Wang A; Li G; Grabstein K Bioconjug Chem; 2015 Oct; 26(10):2070-5. PubMed ID: 26439457 [TBL] [Abstract][Full Text] [Related]
20. DFT-Guided Discovery of Ethynyl-Triazolyl-Phosphinates as Modular Electrophiles for Chemoselective Cysteine Bioconjugation and Profiling. Stieger CE; Park Y; de Geus MAR; Kim D; Huhn C; Slenczka JS; Ochtrop P; Müchler JM; Süssmuth RD; Broichhagen J; Baik MH; Hackenberger CPR Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202205348. PubMed ID: 35792701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]