BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 32233378)

  • 1.
    Cahill JF; Khalid M; Retterer ST; Walton CL; Kertesz V
    J Am Soc Mass Spectrom; 2020 Apr; 31(4):832-839. PubMed ID: 32233378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Driven Liquid Microjunction Surface-Sampling Probe Mass Spectrometry.
    Kertesz V; Khalid M; Retterer ST; Cahill JF
    Anal Chem; 2023 Oct; 95(39):14521-14525. PubMed ID: 37738474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometry imaging under ambient conditions.
    Wu C; Dill AL; Eberlin LS; Cooks RG; Ifa DR
    Mass Spectrom Rev; 2013; 32(3):218-43. PubMed ID: 22996621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Detection of Amino Acids from Bacterial Biofilms and Plant Root Exudates by Liquid Microjunction Surface-Sampling Probe Mass Spectrometry.
    Walton CL; Khalid M; Bible AN; Kertesz V; Retterer ST; Morrell-Falvey J; Cahill JF
    J Am Soc Mass Spectrom; 2022 Sep; 33(9):1615-1625. PubMed ID: 35904879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling handheld liquid microjunction-surface sampling probe (hLMJ-SSP) to the miniature mass spectrometer for automated and in-situ surface analysis.
    Liu S; Xu Q; Li Y; Xu W; Zhai Y
    Talanta; 2022 May; 242():123090. PubMed ID: 35189410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmission geometry laser ablation into a non-contact liquid vortex capture probe for mass spectrometry imaging.
    Ovchinnikova OS; Bhandari D; Lorenz M; Van Berkel GJ
    Rapid Commun Mass Spectrom; 2014 Aug; 28(15):1665-73. PubMed ID: 24975246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring cell secretions on microfluidic chips using solid-phase extraction with mass spectrometry.
    Dugan CE; Grinias JP; Parlee SD; El-Azzouny M; Evans CR; Kennedy RT
    Anal Bioanal Chem; 2017 Jan; 409(1):169-178. PubMed ID: 27761614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic chip to interface porous microneedles for ISF collection.
    Takeuchi K; Takama N; Kim B; Sharma K; Paul O; Ruther P
    Biomed Microdevices; 2019 Mar; 21(1):28. PubMed ID: 30847695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid microjunction surface sampling probe fluid dynamics: computational and experimental analysis of coaxial intercapillary positioning effects on sample manipulation.
    Elnaggar MS; Barbier C; Van Berkel GJ
    J Am Soc Mass Spectrom; 2011 Jul; 22(7):1157-66. PubMed ID: 21953098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput mode liquid microjunction surface sampling probe.
    Van Berkel GJ; Kertesz V; King RC
    Anal Chem; 2009 Aug; 81(16):7096-101. PubMed ID: 19606841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid microjunction surface sampling probe fluid dynamics: characterization and application of an analyte plug formation operational mode.
    ElNaggar MS; Van Berkel GJ
    J Am Soc Mass Spectrom; 2011 Oct; 22(10):1737-43. PubMed ID: 21952887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic HPLC-Chip devices with integral channels containing methylstyrenic-based monolithic media.
    Robotti KM; Yin H; Brennen R; Trojer L; Killeen K
    J Sep Sci; 2009 Oct; 32(20):3379-87. PubMed ID: 19777457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent developments in microfluidic chip-based separation devices coupled to MS for bioanalysis.
    Lin SL; Lin TY; Fuh MR
    Bioanalysis; 2013 Oct; 5(20):2567-80. PubMed ID: 24138628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics.
    Pedde RD; Li H; Borchers CH; Akbari M
    Trends Biotechnol; 2017 Oct; 35(10):954-970. PubMed ID: 28755975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic device based on an evaporation-driven micropump.
    Nie C; Frijns AJ; Mandamparambil R; den Toonder JM
    Biomed Microdevices; 2015 Apr; 17(2):47. PubMed ID: 25804609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic pressure in paper (μPiP): rapid prototyping and low-cost liquid handling for on-chip diagnostics.
    Islam MN; Yost JW; Gagnon ZR
    Analyst; 2022 Feb; 147(4):587-596. PubMed ID: 35037668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.