These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 32233378)

  • 41. A survey of 3D printing technology applied to paper microfluidics.
    Fu E; Wentland L
    Lab Chip; 2021 Dec; 22(1):9-25. PubMed ID: 34897346
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Low-power microfluidic electro-hydraulic pump (EHP).
    Lui C; Stelick S; Cady N; Batt C
    Lab Chip; 2010 Jan; 10(1):74-9. PubMed ID: 20024053
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices.
    Esch MB; Sung JH; Yang J; Yu C; Yu J; March JC; Shuler ML
    Biomed Microdevices; 2012 Oct; 14(5):895-906. PubMed ID: 22847474
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis.
    Niculescu AG; Mihaiescu DE; Grumezescu AM
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955420
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Generation of Dynamic Concentration Profile Using A Microfluidic Device Integrating Pneumatic Microvalves.
    Chen C; Li P; Guo T; Chen S; Xu D; Chen H
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291005
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.
    Cha KJ; Kim DS
    Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry.
    Duarte LC; Pereira I; Maciel LIL; Vaz BG; Coltro WKT
    Anal Chim Acta; 2022 Jan; 1190():339252. PubMed ID: 34857139
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance.
    Das P; van der Meer AD; Vivas A; Arik YB; Remigy JC; Lahitte JF; Lammertink RGH; Bacchin P
    Tissue Eng Part A; 2019 Dec; 25(23-24):1635-1645. PubMed ID: 30957672
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative mass spectrometry imaging of amino acids with isomer differentiation in brain tissue via exhaustive liquid microjunction surface sampling-tandem mass tags labeling-ultra performance liquid chromatography-mass spectrometry.
    Wu Q; Li Y; Wang Y; Lu H
    J Chromatogr A; 2020 Jun; 1621():461086. PubMed ID: 32327225
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SAXS on a chip: from dynamics of phase transitions to alignment phenomena at interfaces studied with microfluidic devices.
    Silva BFB
    Phys Chem Chem Phys; 2017 Sep; 19(35):23690-23703. PubMed ID: 28828415
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery.
    Rath D; Toley BJ
    ACS Sens; 2021 Jan; 6(1):91-99. PubMed ID: 33382580
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automated Addressable Microfluidic Device for Minimally Disruptive Manipulation of Cells and Fluids within Living Cultures.
    Tong A; Pham QL; Shah V; Naik A; Abatemarco P; Voronov R
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1809-1820. PubMed ID: 33455370
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review.
    Zhu X; Wang K; Yan H; Liu C; Zhu X; Chen B
    Environ Sci Technol; 2022 Jan; 56(2):711-731. PubMed ID: 34985862
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Laminar flow-based microfluidic systems for molecular interaction analysis-Part 1: Chip development, system operation and measurement setup.
    Watkin SAJ; Hashemi A; Thomson DR; Pearce FG; Dobson RCJ; Nock VM
    Methods Enzymol; 2023; 682():53-100. PubMed ID: 36948712
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monitoring Dopamine ex Vivo during Electrical Stimulation Using Liquid-Microjunction Surface Sampling.
    Gill EL; Marks M; Yost RA; Vedam-Mai V; Garrett TJ
    Anal Chem; 2017 Dec; 89(24):13658-13665. PubMed ID: 29088914
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D printer platform and conductance feedback loop for automated imaging of uneven surfaces by liquid microjunction-surface sampling probe mass spectrometry.
    Hermann M; Metwally H; Yu J; Smith R; Tomm H; Kaufmann M; Ren KYM; Liu C; LeBlanc Y; Covey TR; Ross AC; Oleschuk RD
    Rapid Commun Mass Spectrom; 2023 Feb; ():e9492. PubMed ID: 36756683
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidic array surface ion-imprinted monolithic capillary microextraction chip on-line hyphenated with ICP-MS for the high throughput analysis of gadolinium in human body fluids.
    Ou X; He M; Chen B; Wang H; Hu B
    Analyst; 2019 Apr; 144(8):2736-2745. PubMed ID: 30865732
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel microfluidic chip-based sperm-sorting device constructed using design of experiment method.
    Phiphattanaphiphop C; Leksakul K; Phatthanakun R; Khamlor T
    Sci Rep; 2020 Oct; 10(1):17143. PubMed ID: 33051512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microfluidic chip connected to porous microneedle array for continuous ISF sampling.
    Takeuchi K; Takama N; Sharma K; Paul O; Ruther P; Suga T; Kim B
    Drug Deliv Transl Res; 2022 Feb; 12(2):435-443. PubMed ID: 34739717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.