These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32233476)

  • 1. Suspended Nanochannel Resonator Arrays with Piezoresistive Sensors for High-Throughput Weighing of Nanoparticles in Solution.
    Gagino M; Katsikis G; Olcum S; Virot L; Cochet M; Thuaire A; Manalis SR; Agache V
    ACS Sens; 2020 Apr; 5(4):1230-1238. PubMed ID: 32233476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weighing nanoparticles in solution at the attogram scale.
    Olcum S; Cermak N; Wasserman SC; Christine KS; Atsumi H; Payer KR; Shen W; Lee J; Belcher AM; Bhatia SN; Manalis SR
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1310-5. PubMed ID: 24474753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution.
    Modena MM; Wang Y; Riedel D; Burg TP
    Lab Chip; 2014 Jan; 14(2):342-50. PubMed ID: 24247122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suspended microchannel resonators with piezoresistive sensors.
    Lee J; Chunara R; Shen W; Payer K; Babcock K; Burg TP; Manalis SR
    Lab Chip; 2011 Feb; 11(4):645-51. PubMed ID: 21180703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and high-precision sizing of single particles using parallel suspended microchannel resonator arrays and deconvolution.
    Stockslager MA; Olcum S; Knudsen SM; Kimmerling RJ; Cermak N; Payer KR; Agache V; Manalis SR
    Rev Sci Instrum; 2019 Aug; 90(8):085004. PubMed ID: 31472632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward attogram mass measurements in solution with suspended nanochannel resonators.
    Lee J; Shen W; Payer K; Burg TP; Manalis SR
    Nano Lett; 2010 Jul; 10(7):2537-42. PubMed ID: 20527897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a nanomechanical mass sensor containing a nanofluidic channel.
    Barton RA; Ilic B; Verbridge SS; Cipriany BR; Parpia JM; Craighead HG
    Nano Lett; 2010 Jun; 10(6):2058-63. PubMed ID: 20443578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring nanoparticles in liquid with attogram resolution using a microfabricated glass suspended microchannel resonator.
    Daryani MM; Manzaneque T; Wei J; Ghatkesar MK
    Microsyst Nanoeng; 2022; 8():92. PubMed ID: 36051745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput fabrication of plasmonic nanostructures in nanofluidic pores for biosensing applications.
    Mazzotta F; Höök F; Jonsson MP
    Nanotechnology; 2012 Oct; 23(41):415304. PubMed ID: 23018651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels.
    Fritzsche J; Albinsson D; Fritzsche M; Antosiewicz TJ; Westerlund F; Langhammer C
    Nano Lett; 2016 Dec; 16(12):7857-7864. PubMed ID: 27960495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creating Sub-50 Nm Nanofluidic Junctions in PDMS Microfluidic Chip via Self-Assembly Process of Colloidal Particles.
    Wei X; Syed A; Mao P; Han J; Song YA
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and Measurement of a Suspended Nanochannel Microbridge Resonator Monolithically Integrated with CMOS Readout Circuitry.
    Vidal-Álvarez G; Marigó E; Torres F; Barniol N
    Micromachines (Basel); 2016 Mar; 7(3):. PubMed ID: 30407413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip.
    Chen HM; Pang L; Gordon MS; Fainman Y
    Small; 2011 Oct; 7(19):2750-7. PubMed ID: 21842478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles.
    Wang J; Chen W; Sun J; Liu C; Yin Q; Zhang L; Xianyu Y; Shi X; Hu G; Jiang X
    Lab Chip; 2014 May; 14(10):1673-7. PubMed ID: 24675980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weighing of biomolecules, single cells and single nanoparticles in fluid.
    Burg TP; Godin M; Knudsen SM; Shen W; Carlson G; Foster JS; Babcock K; Manalis SR
    Nature; 2007 Apr; 446(7139):1066-9. PubMed ID: 17460669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crack-Photolithography for Membrane-Free Diffusion-Based Micro/Nanofluidic Devices.
    Kim M; Kim T
    Anal Chem; 2015 Nov; 87(22):11215-23. PubMed ID: 26140611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-core optical ring-resonator sensors.
    White IM; Oveys H; Fan X
    Opt Lett; 2006 May; 31(9):1319-21. PubMed ID: 16642098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing.
    Peng R; Li D
    Nanoscale; 2017 May; 9(18):5964-5974. PubMed ID: 28440838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics.
    Sun J; Xianyu Y; Jiang X
    Chem Soc Rev; 2014 Sep; 43(17):6239-53. PubMed ID: 24882068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Area Enhancement of Nanomechanical Disk Resonators Using MWCNT for Mass-Sensing Applications.
    Qaradaghi V; Dousti B; Choi Y; Lee GS; Hu W; Pourkamali S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; 66(3):609-615. PubMed ID: 30507529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.