These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface. Regtmeier J; Käsewieter J; Everwand M; Anselmetti D J Sep Sci; 2011 May; 34(10):1180-3. PubMed ID: 21442752 [TBL] [Abstract][Full Text] [Related]
24. Nanofluidic analytical system integrated with nanochannel open/close valves for enzyme-linked immunosorbent assay. Sano H; Kazoe Y; Ohta R; Shimizu H; Morikawa K; Kitamori T Lab Chip; 2023 Feb; 23(4):727-736. PubMed ID: 36484269 [TBL] [Abstract][Full Text] [Related]
25. Use of a micro- to nanochannel for the characterization of surface-enhanced Raman spectroscopy signals from unique functionalized nanoparticles. Walton BM; Huang PJ; Kameoka J; Cote GL J Biomed Opt; 2016 Aug; 21(8):85006. PubMed ID: 27564317 [TBL] [Abstract][Full Text] [Related]
26. Measuring nanoparticle flow with the image structure function. Dienerowitz M; Lee M; Gibson G; Padgett M Lab Chip; 2013 Jun; 13(12):2359-63. PubMed ID: 23644980 [TBL] [Abstract][Full Text] [Related]
27. Characterization of electroosmotic flow through nanoporous self-assembled arrays. Bell K; Gomes M; Nazemifard N Electrophoresis; 2015 Aug; 36(15):1738-43. PubMed ID: 25964193 [TBL] [Abstract][Full Text] [Related]
28. Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction. Marigó E; Sansa M; Pérez-Murano F; Uranga A; Barniol N Sensors (Basel); 2015 Jul; 15(7):17036-47. PubMed ID: 26184222 [TBL] [Abstract][Full Text] [Related]
29. Frequency-Dependent Piezoresistive Effect in Top-down Fabricated Gold Nanoresistors. Ti C; Ari AB; Karakan MÇ; Yanik C; Kaya II; Hanay MS; Svitelskiy O; González M; Seren H; Ekinci KL Nano Lett; 2021 Aug; 21(15):6533-6539. PubMed ID: 34319115 [TBL] [Abstract][Full Text] [Related]
30. A Suspended Silicon Single-Hole Transistor as an Extremely Scaled Gigahertz Nanoelectromechanical Beam Resonator. Zhang ZZ; Hu Q; Song XX; Ying Y; Li HO; Zhang Z; Guo GP Adv Mater; 2020 Dec; 32(52):e2005625. PubMed ID: 33191506 [TBL] [Abstract][Full Text] [Related]
35. Differentially piezoresistive transduction of high-Q encapsulated SOI-MEMS resonators with sub-100 nm gaps. Li CS; Li MH; Li SS IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):220-9. PubMed ID: 25585404 [TBL] [Abstract][Full Text] [Related]
36. High throughput production of single core double emulsions in a parallelized microfluidic device. Romanowsky MB; Abate AR; Rotem A; Holtze C; Weitz DA Lab Chip; 2012 Feb; 12(4):802-7. PubMed ID: 22222423 [TBL] [Abstract][Full Text] [Related]
37. Electromechanical piezoresistive sensing in suspended graphene membranes. Smith AD; Niklaus F; Paussa A; Vaziri S; Fischer AC; Sterner M; Forsberg F; Delin A; Esseni D; Palestri P; Östling M; Lemme MC Nano Lett; 2013 Jul; 13(7):3237-42. PubMed ID: 23786215 [TBL] [Abstract][Full Text] [Related]
38. Measuring single cell mass, volume, and density with dual suspended microchannel resonators. Bryan AK; Hecht VC; Shen W; Payer K; Grover WH; Manalis SR Lab Chip; 2014 Feb; 14(3):569-576. PubMed ID: 24296901 [TBL] [Abstract][Full Text] [Related]
39. Biopolymer microparticle and nanoparticle formation within a microfluidic device. Rondeau E; Cooper-White JJ Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374 [TBL] [Abstract][Full Text] [Related]
40. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Wunsch BH; Smith JT; Gifford SM; Wang C; Brink M; Bruce RL; Austin RH; Stolovitzky G; Astier Y Nat Nanotechnol; 2016 Nov; 11(11):936-940. PubMed ID: 27479757 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]