These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32233476)

  • 21. Atmospheric Pressure Mass Spectrometry of Single Viruses and Nanoparticles by Nanoelectromechanical Systems.
    Erdogan RT; Alkhaled M; Kaynak BE; Alhmoud H; Pisheh HS; Kelleci M; Karakurt I; Yanik C; Şen ZB; Sari B; Yagci AM; Özkul A; Hanay MS
    ACS Nano; 2022 Mar; 16(3):3821-3833. PubMed ID: 35785967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems.
    Wolfrum B; Kätelhön E; Yakushenko A; Krause KJ; Adly N; Hüske M; Rinklin P
    Acc Chem Res; 2016 Sep; 49(9):2031-40. PubMed ID: 27602780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface.
    Regtmeier J; Käsewieter J; Everwand M; Anselmetti D
    J Sep Sci; 2011 May; 34(10):1180-3. PubMed ID: 21442752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanofluidic analytical system integrated with nanochannel open/close valves for enzyme-linked immunosorbent assay.
    Sano H; Kazoe Y; Ohta R; Shimizu H; Morikawa K; Kitamori T
    Lab Chip; 2023 Feb; 23(4):727-736. PubMed ID: 36484269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of a micro- to nanochannel for the characterization of surface-enhanced Raman spectroscopy signals from unique functionalized nanoparticles.
    Walton BM; Huang PJ; Kameoka J; Cote GL
    J Biomed Opt; 2016 Aug; 21(8):85006. PubMed ID: 27564317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measuring nanoparticle flow with the image structure function.
    Dienerowitz M; Lee M; Gibson G; Padgett M
    Lab Chip; 2013 Jun; 13(12):2359-63. PubMed ID: 23644980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of electroosmotic flow through nanoporous self-assembled arrays.
    Bell K; Gomes M; Nazemifard N
    Electrophoresis; 2015 Aug; 36(15):1738-43. PubMed ID: 25964193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction.
    Marigó E; Sansa M; Pérez-Murano F; Uranga A; Barniol N
    Sensors (Basel); 2015 Jul; 15(7):17036-47. PubMed ID: 26184222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency-Dependent Piezoresistive Effect in Top-down Fabricated Gold Nanoresistors.
    Ti C; Ari AB; Karakan MÇ; Yanik C; Kaya II; Hanay MS; Svitelskiy O; González M; Seren H; Ekinci KL
    Nano Lett; 2021 Aug; 21(15):6533-6539. PubMed ID: 34319115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Suspended Silicon Single-Hole Transistor as an Extremely Scaled Gigahertz Nanoelectromechanical Beam Resonator.
    Zhang ZZ; Hu Q; Song XX; Ying Y; Li HO; Zhang Z; Guo GP
    Adv Mater; 2020 Dec; 32(52):e2005625. PubMed ID: 33191506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants.
    Lafleur JP; Senkbeil S; Jensen TG; Kutter JP
    Lab Chip; 2012 Nov; 12(22):4651-6. PubMed ID: 22824920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions.
    Olcum S; Cermak N; Wasserman SC; Manalis SR
    Nat Commun; 2015 May; 6():7070. PubMed ID: 25963304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated, controlled deposition of nanoparticles on polyelectrolyte-coated silicon from chemomechanically patterned droplet arrays.
    Owen JI; Niederhauser TL; Wacaser BA; Christenson MP; Davis RC; Linford MR
    Lab Chip; 2004 Dec; 4(6):553-7. PubMed ID: 15570364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. VHF NEMS-CMOS piezoresistive resonators for advanced sensing applications.
    Arcamone J; Dupré C; Arndt G; Colinet E; Hentz S; Ollier E; Duraffourg L
    Nanotechnology; 2014 Oct; 25(43):435501. PubMed ID: 25288224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differentially piezoresistive transduction of high-Q encapsulated SOI-MEMS resonators with sub-100 nm gaps.
    Li CS; Li MH; Li SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):220-9. PubMed ID: 25585404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High throughput production of single core double emulsions in a parallelized microfluidic device.
    Romanowsky MB; Abate AR; Rotem A; Holtze C; Weitz DA
    Lab Chip; 2012 Feb; 12(4):802-7. PubMed ID: 22222423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electromechanical piezoresistive sensing in suspended graphene membranes.
    Smith AD; Niklaus F; Paussa A; Vaziri S; Fischer AC; Sterner M; Forsberg F; Delin A; Esseni D; Palestri P; Östling M; Lemme MC
    Nano Lett; 2013 Jul; 13(7):3237-42. PubMed ID: 23786215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring single cell mass, volume, and density with dual suspended microchannel resonators.
    Bryan AK; Hecht VC; Shen W; Payer K; Grover WH; Manalis SR
    Lab Chip; 2014 Feb; 14(3):569-576. PubMed ID: 24296901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biopolymer microparticle and nanoparticle formation within a microfluidic device.
    Rondeau E; Cooper-White JJ
    Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm.
    Wunsch BH; Smith JT; Gifford SM; Wang C; Brink M; Bruce RL; Austin RH; Stolovitzky G; Astier Y
    Nat Nanotechnol; 2016 Nov; 11(11):936-940. PubMed ID: 27479757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.