These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32233477)

  • 41. Impact of Adsorbed Water on the Interaction of Limonene with Hydroxylated SiO
    Frank ES; Fan H; Shrestha M; Riahi S; Tobias DJ; Grassian VH
    J Phys Chem A; 2020 Dec; 124(50):10592-10599. PubMed ID: 33274640
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Air-liquid interfaces of aqueous solutions containing ammonium and sulfate: spectroscopic and molecular dynamics studies.
    Gopalakrishnan S; Jungwirth P; Tobias DJ; Allen HC
    J Phys Chem B; 2005 May; 109(18):8861-72. PubMed ID: 16852054
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A multiscale model for charge inversion in electric double layers.
    Mashayak SY; Aluru NR
    J Chem Phys; 2018 Jun; 148(21):214102. PubMed ID: 29884053
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Dynamics Study of the Electric Double Layer and Nonlinear Spectroscopy at the Amorphous Silica-Water Interface.
    Chen SH; Singer SJ
    J Phys Chem B; 2019 Jul; 123(29):6364-6384. PubMed ID: 31251618
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of surface charge on the vibrational dynamics of interfacial water.
    Eftekhari-Bafrooei A; Borguet E
    J Am Chem Soc; 2009 Sep; 131(34):12034-5. PubMed ID: 19663486
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental Correlation Between Interfacial Water Structure and Mineral Reactivity.
    Dewan S; Yeganeh MS; Borguet E
    J Phys Chem Lett; 2013 Jun; 4(11):1977-82. PubMed ID: 26283137
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Heterodyne-detected sum frequency generation of water at surfaces with varying hydrophobicity.
    Sanders SE; Petersen PB
    J Chem Phys; 2019 May; 150(20):204708. PubMed ID: 31153186
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An ab initio molecular dynamics study of the liquid-vapor interface of an aqueous NaCl solution: inhomogeneous density, polarity, hydrogen bonds, and frequency fluctuations of interfacial molecules.
    Choudhuri JR; Chandra A
    J Chem Phys; 2014 Nov; 141(19):194705. PubMed ID: 25416903
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface residence and uptake of methyl chloride and methyl alcohol at the air/water interface studied by vibrational sum frequency spectroscopy and molecular dynamics.
    Harper K; Minofar B; Sierra-Hernandez MR; Casillas-Ituarte NN; Roeselova M; Allen HC
    J Phys Chem A; 2009 Mar; 113(10):2015-24. PubMed ID: 19195991
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polyatomic Iodine Species at the Air-Water Interface and Its Relevance to Atmospheric Iodine Chemistry: An HD-VSFG and Raman-MCR Study.
    Saha S; Roy S; Mathi P; Mondal JA
    J Phys Chem A; 2019 Apr; 123(13):2924-2934. PubMed ID: 30830779
    [TBL] [Abstract][Full Text] [Related]  

  • 52. "Breaking" and "Making" of Water Structure at the Air/Water-Electrolyte (NaXO
    Roy S; Mondal JA
    J Phys Chem Lett; 2021 Feb; 12(7):1955-1960. PubMed ID: 33591757
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vibrational Sum Frequency Generation Spectroscopy of the Water Liquid-Vapor Interface from Density Functional Theory-Based Molecular Dynamics Simulations.
    Sulpizi M; Salanne M; Sprik M; Gaigeot MP
    J Phys Chem Lett; 2013 Jan; 4(1):83-7. PubMed ID: 26291216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Topmost Water Structure at a Charged Silica/Aqueous Interface Revealed by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.
    Urashima SH; Myalitsin A; Nihonyanagi S; Tahara T
    J Phys Chem Lett; 2018 Jul; 9(14):4109-4114. PubMed ID: 29975846
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Nov; 141(18):18C502. PubMed ID: 25399167
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alkyl Chain Length Dependent Structural and Orientational Transformations of Water at Alcohol-Water Interfaces and Its Relevance to Atmospheric Aerosols.
    Mondal JA; Namboodiri V; Mathi P; Singh AK
    J Phys Chem Lett; 2017 Apr; 8(7):1637-1644. PubMed ID: 28333468
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nitriles at Silica Interfaces Resemble Supported Lipid Bilayers.
    Berne BJ; Fourkas JT; Walker RA; Weeks JD
    Acc Chem Res; 2016 Sep; 49(9):1605-13. PubMed ID: 27525616
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure and reactivity of water at biomaterial surfaces.
    Vogler EA
    Adv Colloid Interface Sci; 1998 Feb; 74():69-117. PubMed ID: 9561719
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Water orientation and hydrogen-bond structure at the fluorite/water interface.
    Khatib R; Backus EH; Bonn M; Perez-Haro MJ; Gaigeot MP; Sulpizi M
    Sci Rep; 2016 Apr; 6():24287. PubMed ID: 27068326
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Oxidation Level on the Interfacial Water at the Graphene Oxide-Water Interface: From Spectroscopic Signatures to Hydrogen-Bonding Environment.
    David R; Tuladhar A; Zhang L; Arges C; Kumar R
    J Phys Chem B; 2020 Sep; 124(37):8167-8178. PubMed ID: 32804501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.