These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32233477)

  • 61. Vibrational energy relaxation of interfacial OH on a water-covered α-Al
    Melani G; Nagata Y; Saalfrank P
    Phys Chem Chem Phys; 2021 Apr; 23(13):7714-7723. PubMed ID: 32857089
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular hydrophobicity at a macroscopically hydrophilic surface.
    Cyran JD; Donovan MA; Vollmer D; Siro Brigiano F; Pezzotti S; Galimberti DR; Gaigeot MP; Bonn M; Backus EHG
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1520-1525. PubMed ID: 30655339
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structure at the air/water interface in the presence of phenol: a study using heterodyne-detected vibrational sum frequency generation and molecular dynamics simulation.
    Kusaka R; Ishiyama T; Nihonyanagi S; Morita A; Tahara T
    Phys Chem Chem Phys; 2018 Jan; 20(5):3002-3009. PubMed ID: 29075738
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of a liquid flow on the forces between charged solid surfaces and the non-equilibrium electric double layer.
    McNamee CE
    Adv Colloid Interface Sci; 2019 Apr; 266():21-33. PubMed ID: 30831437
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Water-mediated ion-ion interactions are enhanced at the water vapor-liquid interface.
    Venkateshwaran V; Vembanur S; Garde S
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8729-34. PubMed ID: 24889634
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrolytes at interfaces: accessing the first nanometers using X-ray standing waves.
    Ben Jabrallah S; Malloggi F; Belloni L; Girard L; Novikov D; Mocuta C; Thiaudière D; Daillant J
    Phys Chem Chem Phys; 2016 Dec; 19(1):167-174. PubMed ID: 27929155
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Specific counter-cation effect on the molecular orientation of thiocyanate anions at the aqueous solution interface.
    Hao H; Xie Q; Ai J; Wang Y; Bian H
    Phys Chem Chem Phys; 2020 May; 22(18):10106-10115. PubMed ID: 32342973
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of Ca
    Schulze-Zachau F; Bachmann S; Braunschweig B
    Langmuir; 2018 Oct; 34(39):11714-11722. PubMed ID: 30188134
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Protein adsorption at the electrified air-water interface: implications on foam stability.
    Engelhardt K; Rumpel A; Walter J; Dombrowski J; Kulozik U; Braunschweig B; Peukert W
    Langmuir; 2012 May; 28(20):7780-7. PubMed ID: 22530646
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Thiocyanate Ions Form Antiparallel Populations at the Concentrated Electrolyte/Charged Surfactant Interface.
    Kumal RR; Wimalasiri PN; Servis MJ; Uysal A
    J Phys Chem Lett; 2022 Jun; 13(22):5081-5087. PubMed ID: 35653184
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ions Slow Water Dynamics at Nonionic Surfactant Interfaces.
    Baryiames CP; Ma E; Baiz CR
    J Phys Chem B; 2020 Dec; 124(52):11895-11900. PubMed ID: 33326222
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Surface solvation and hindered isomerization at the water/silica interface explored with second harmonic generation.
    Purnell GE; Walker RA
    J Chem Phys; 2019 May; 150(19):194701. PubMed ID: 31117767
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Investigation of Water Evaporation Process at Air/Water Interface using Hofmeister Ions.
    Rana B; Fairhurst DJ; Jena KC
    J Am Chem Soc; 2022 Oct; 144(39):17832-17840. PubMed ID: 36131621
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Integration or segregation: how do molecules behave at oil/water interfaces?
    Moore FG; Richmond GL
    Acc Chem Res; 2008 Jun; 41(6):739-48. PubMed ID: 18507401
    [TBL] [Abstract][Full Text] [Related]  

  • 75. DFT-MD of the (110)-Co
    Creazzo F; Galimberti DR; Pezzotti S; Gaigeot MP
    J Chem Phys; 2019 Jan; 150(4):041721. PubMed ID: 30709279
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hydrogen bonding and vibrational energy relaxation of interfacial water: A full DFT molecular dynamics simulation.
    Jeon J; Hsieh CS; Nagata Y; Bonn M; Cho M
    J Chem Phys; 2017 Jul; 147(4):044707. PubMed ID: 28764370
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface.
    Hua W; Verreault D; Allen HC
    J Am Chem Soc; 2015 Nov; 137(43):13920-6. PubMed ID: 26456219
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structure, Polarization, and Sum Frequency Generation Spectrum of Interfacial Water on Anatase TiO
    Calegari Andrade MF; Ko HY; Car R; Selloni A
    J Phys Chem Lett; 2018 Dec; 9(23):6716-6721. PubMed ID: 30388372
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of stearyl alcohol monolayer on the structure, dynamics and vibrational sum frequency generation spectroscopy of interfacial water.
    Das B; Chandra A
    Phys Chem Chem Phys; 2022 Mar; 24(12):7374-7386. PubMed ID: 35266477
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.