These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 32233535)
1. Feedback control problem of an SIR epidemic model based on the Hamilton-Jacobi-Bellman equation. Hwang YG; Kwon HD; Lee J Math Biosci Eng; 2020 Jan; 17(3):2284-2301. PubMed ID: 32233535 [TBL] [Abstract][Full Text] [Related]
2. Threshold dynamics and optimal control on an age-structured SIRS epidemic model with vaccination. Ma H; Zhang Q Math Biosci Eng; 2021 Oct; 18(6):9474-9495. PubMed ID: 34814354 [TBL] [Abstract][Full Text] [Related]
3. Global optimal vaccination in the SIR model: properties of the value function and application to cost-effectiveness analysis. Laguzet L; Turinici G Math Biosci; 2015 May; 263():180-97. PubMed ID: 25771436 [TBL] [Abstract][Full Text] [Related]
4. Optimal control of an SIR epidemic through finite-time non-pharmaceutical intervention. Ketcheson DI J Math Biol; 2021 Jun; 83(1):7. PubMed ID: 34176029 [TBL] [Abstract][Full Text] [Related]
5. A simplified stochastic optimization model for logistic dynamics with control-dependent carrying capacity. Yoshioka H J Biol Dyn; 2019 Dec; 13(1):148-176. PubMed ID: 30727850 [TBL] [Abstract][Full Text] [Related]
6. Reinforcement learning solution for HJB equation arising in constrained optimal control problem. Luo B; Wu HN; Huang T; Liu D Neural Netw; 2015 Nov; 71():150-8. PubMed ID: 26356598 [TBL] [Abstract][Full Text] [Related]
7. Optimal vaccination in a SIRS epidemic model. Federico S; Ferrari G; Torrente ML Econ Theory; 2022 Dec; ():1-26. PubMed ID: 36573250 [TBL] [Abstract][Full Text] [Related]
8. Design of nonlinear optimal control for chaotic synchronization of coupled stochastic neural networks via Hamilton-Jacobi-Bellman equation. Liu Z Neural Netw; 2018 Mar; 99():166-177. PubMed ID: 29427843 [TBL] [Abstract][Full Text] [Related]
9. Sparse successive approximation for nonlinear H Wang Z; Li Y; Qiu Y ISA Trans; 2024 Feb; 145():63-77. PubMed ID: 38071116 [TBL] [Abstract][Full Text] [Related]
10. Synchronization in a multilevel network using the Hamilton-Jacobi-Bellman (HJB) technique. Njougouo T; Camargo V; Louodop P; Fagundes Ferreira F; Talla PK; Cerdeira HA Chaos; 2022 Sep; 32(9):093133. PubMed ID: 36182367 [TBL] [Abstract][Full Text] [Related]
11. Generalized hamilton-jacobi-bellman formulation -based neural network control of affine nonlinear discrete-time systems. Chen Z; Jagannathan S IEEE Trans Neural Netw; 2008 Jan; 19(1):90-106. PubMed ID: 18269941 [TBL] [Abstract][Full Text] [Related]
12. Neural-network-based online HJB solution for optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems. Liu D; Wang D; Wang FY; Li H; Yang X IEEE Trans Cybern; 2014 Dec; 44(12):2834-47. PubMed ID: 25415951 [TBL] [Abstract][Full Text] [Related]
13. Least squares solutions of the HJB equation with neural network value-function approximators. Tassa Y; Erez T IEEE Trans Neural Netw; 2007 Jul; 18(4):1031-41. PubMed ID: 17668659 [TBL] [Abstract][Full Text] [Related]
14. Singular stochastic control model for algae growth management in dam downstream. Yoshioka H; Yaegashi Y J Biol Dyn; 2018 Dec; 12(1):242-270. PubMed ID: 29461937 [TBL] [Abstract][Full Text] [Related]
15. Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems. Kiumarsi B; Lewis FL IEEE Trans Neural Netw Learn Syst; 2015 Jan; 26(1):140-51. PubMed ID: 25312944 [TBL] [Abstract][Full Text] [Related]
16. Hamiltonian-Driven Adaptive Dynamic Programming With Approximation Errors. Yang Y; Modares H; Vamvoudakis KG; He W; Xu CZ; Wunsch DC IEEE Trans Cybern; 2022 Dec; 52(12):13762-13773. PubMed ID: 34495864 [TBL] [Abstract][Full Text] [Related]
17. Robust min-max optimal control design for systems with uncertain models: A neural dynamic programming approach. Ballesteros M; Chairez I; Poznyak A Neural Netw; 2020 May; 125():153-164. PubMed ID: 32097830 [TBL] [Abstract][Full Text] [Related]
18. Path integral control of a stochastic multi-risk SIR pandemic model. Pramanik P Theory Biosci; 2023 Jun; 142(2):107-142. PubMed ID: 36899154 [TBL] [Abstract][Full Text] [Related]
20. Approximate optimal control design for nonlinear one-dimensional parabolic PDE systems using empirical eigenfunctions and neural network. Luo B; Wu HN IEEE Trans Syst Man Cybern B Cybern; 2012 Dec; 42(6):1538-49. PubMed ID: 22588610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]