BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 3223354)

  • 1. Adhesion patterns and cytoskeleton of rabbit osteoclasts on bone slices and glass.
    Turksen K; Kanehisa J; Opas M; Heersche JN; Aubin JE
    J Bone Miner Res; 1988 Aug; 3(4):389-400. PubMed ID: 3223354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrosome clustering control in osteoclasts through CCR5-mediated signaling.
    Lee JW; Lee IH; Watanabe H; Liu Y; Sawada K; Maekawa M; Uehara S; Kobayashi Y; Imai Y; Kong SW; Iimura T
    Sci Rep; 2023 Nov; 13(1):20813. PubMed ID: 38012303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terminally differentiated osteoclasts organize centrosomes into large clusters for microtubule nucleation and bone resorption.
    Philip R; Fiorino C; Harrison RE
    Mol Biol Cell; 2022 Jul; 33(8):ar68. PubMed ID: 35511803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosins in Osteoclast Formation and Function.
    Lee BS
    Biomolecules; 2018 Nov; 8(4):. PubMed ID: 30467281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule dynamic instability controls podosome patterning in osteoclasts through EB1, cortactin, and Src.
    Biosse Duplan M; Zalli D; Stephens S; Zenger S; Neff L; Oelkers JM; Lai FP; Horne W; Rottner K; Baron R
    Mol Cell Biol; 2014 Jan; 34(1):16-29. PubMed ID: 24144981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential distribution of posttranslationally modified microtubules in osteoclasts.
    Akisaka T; Yoshida H; Takigawa T
    J Histochem Cytochem; 2011 Jun; 59(6):630-8. PubMed ID: 21421796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone is not essential for osteoclast activation.
    Fuller K; Ross JL; Szewczyk KA; Moss R; Chambers TJ
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20862258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulated proteolysis of nonmuscle myosin IIA stimulates osteoclast fusion.
    McMichael BK; Wysolmerski RB; Lee BS
    J Biol Chem; 2009 May; 284(18):12266-75. PubMed ID: 19269977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(-/-) mice.
    Gil-Henn H; Destaing O; Sims NA; Aoki K; Alles N; Neff L; Sanjay A; Bruzzaniti A; De Camilli P; Baron R; Schlessinger J
    J Cell Biol; 2007 Sep; 178(6):1053-64. PubMed ID: 17846174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyphosphoinositides-dependent regulation of the osteoclast actin cytoskeleton and bone resorption.
    Biswas RS; Baker D; Hruska KA; Chellaiah MA
    BMC Cell Biol; 2004 May; 5():19. PubMed ID: 15142256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength.
    Chellaiah M; Kizer N; Silva M; Alvarez U; Kwiatkowski D; Hruska KA
    J Cell Biol; 2000 Feb; 148(4):665-78. PubMed ID: 10684249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts.
    Burgess TL; Qian Y; Kaufman S; Ring BD; Van G; Capparelli C; Kelley M; Hsu H; Boyle WJ; Dunstan CR; Hu S; Lacey DL
    J Cell Biol; 1999 May; 145(3):527-38. PubMed ID: 10225954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polarization.
    Yovich S; Seydel U; Papadimitriou JM; Nicholson GC; Wood DJ; Zheng MH
    Histochem J; 1998 Apr; 30(4):267-73. PubMed ID: 9610818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochalasin D reduces osteoclastic bone resorption by inhibiting development of ruffled border-clear zone complex.
    Sasaki T; Debari K; Udagawa N
    Calcif Tissue Int; 1993 Sep; 53(3):217-21. PubMed ID: 8242476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cytoskeletal framework of chick osteoclasts in resin-less sections.
    Kato T; Akisaka T
    J Anat; 1994 Dec; 185 ( Pt 3)(Pt 3):599-607. PubMed ID: 7649795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of fluoride on the patterns of adherence of osteoclasts cultured on and resorbing dentine: a 3-D assessment of vinculin-labelled cells using confocal optical microscopy.
    Taylor ML; Boyde A; Jones SJ
    Anat Embryol (Berl); 1989; 180(5):427-35. PubMed ID: 2515773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Echistatin is a potent inhibitor of bone resorption in culture.
    Sato M; Sardana MK; Grasser WA; Garsky VM; Murray JM; Gould RJ
    J Cell Biol; 1990 Oct; 111(4):1713-23. PubMed ID: 2211834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro bone resorption by isolated multinucleated giant cells from giant cell tumour of bone: light and electron microscopic study.
    Kanehisa J; Izumo T; Takeuchi M; Yamanaka T; Fujii T; Takeuchi H
    Virchows Arch A Pathol Anat Histopathol; 1991; 419(4):327-38. PubMed ID: 1949615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pitfalls in pit measurement.
    Boyde A; Jones SJ
    Calcif Tissue Int; 1991 Aug; 49(2):65-70. PubMed ID: 1913296
    [No Abstract]   [Full Text] [Related]  

  • 20. A comparison of the effects of inhibitors of carbonic anhydrase on osteoclastic bone resorption and purified carbonic anhydrase isozyme II.
    Hall TJ; Higgins W; Tardif C; Chambers TJ
    Calcif Tissue Int; 1991 Nov; 49(5):328-32. PubMed ID: 1782573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.