These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32233608)

  • 1. Pulsatile flow through idealized renal tubules: Fluid-structure interaction and dynamic pathologies.
    Praljak N; Ryan SD; Resnick A
    Math Biosci Eng; 2019 Dec; 17(2):1787-1807. PubMed ID: 32233608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid-structure interaction modelling of neighboring tubes with primary cilium analysis.
    Zekaj N; Ryan SD; Resnick A
    Math Biosci Eng; 2023 Jan; 20(2):3677-3699. PubMed ID: 36899599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.
    Garnotel S; Salmon S; Balédent O
    Acta Neurochir Suppl; 2018; 126():255-259. PubMed ID: 29492571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluid--structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery.
    Bathe M; Kamm RD
    J Biomech Eng; 1999 Aug; 121(4):361-9. PubMed ID: 10464689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.
    Sharzehee M; Khalafvand SS; Han HC
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(3):219-231. PubMed ID: 29446991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of fluid dynamics in pulsatile cardiopulmonary bypass.
    Pennati G; Fiore GB; Laganà K; Fumero R
    Artif Organs; 2004 Feb; 28(2):196-209. PubMed ID: 14961960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of creeping flow through a linearly absorbing slit filled with porous medium to diseased renal tubules.
    Siddiqui AM; Azim QA; Sunny DA
    Biomech Model Mechanobiol; 2021 Apr; 20(2):569-584. PubMed ID: 33128659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The assignment of velocity profiles in finite element simulations of pulsatile flow in arteries.
    Redaelli A; Boschetti F; Inzoli F
    Comput Biol Med; 1997 May; 27(3):233-47. PubMed ID: 9215485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid waves in renal tubules.
    Sakai T; Craig DA; Wexler AS; Marsh DJ
    Biophys J; 1986 Nov; 50(5):805-13. PubMed ID: 3790686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wall stress in media layer of stented three-layered aortic aneurysm at different intraluminal thrombus locations with pulsatile heart cycle.
    Rahmani S; Alagheband M; Karimi A; Alizadeh M; Navidbakhsh M
    J Med Eng Technol; 2015 May; 39(4):239-45. PubMed ID: 25906361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow.
    Wang Z; Wood NB; Xu XY
    Int J Numer Method Biomed Eng; 2015 May; 31(5):e02709. PubMed ID: 25630788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructure of three-dimensionally localized distal nephron segments in superficial cortex of the rat kidney.
    Dørup J
    J Ultrastruct Mol Struct Res; 1988 May; 99(2):169-87. PubMed ID: 3171250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the biomechanical responses of the loaded bone in macroscale and mesoscale by multiscale poroelastic FE analysis.
    Yu W; Wu X; Cen H; Guo Y; Li C; Wang Y; Qin Y; Chen W
    Biomed Eng Online; 2019 Dec; 18(1):122. PubMed ID: 31870380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turbulent finite element model applied for blood flow calculation in arterial bifurcation.
    Nikolić A; Topalović M; Simić V; Filipović N
    Comput Methods Programs Biomed; 2021 Sep; 209():106328. PubMed ID: 34407452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A coupled fluid-structure finite element model of the aortic valve and root.
    Nicosia MA; Cochran RP; Einstein DR; Rutland CJ; Kunzelman KS
    J Heart Valve Dis; 2003 Nov; 12(6):781-9. PubMed ID: 14658821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tubule-tubule and tubule-arteriole contacts in rat kidney distal nephrons. A morphologic study based on computer-assisted three-dimensional reconstructions.
    Dørup J; Morsing P; Rasch R
    Lab Invest; 1992 Dec; 67(6):761-9. PubMed ID: 1460867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions.
    Finol EA; Keyhani K; Amon CH
    J Biomech Eng; 2003 Apr; 125(2):207-17. PubMed ID: 12751282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model of TGF-proximal tubule interactions in renal autoregulation.
    Cupples WA; Wexler AS; Marsh DJ
    Am J Physiol; 1990 Oct; 259(4 Pt 2):F715-26. PubMed ID: 2221107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of the relationship between the flow rate of tubular fluid and potassium transport in the distal tubule of the rat.
    Kunau RT; Webb HL; Borman SC
    J Clin Invest; 1974 Dec; 54(6):1488-95. PubMed ID: 4436444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.