These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32233632)

  • 1. Development and in vitro characterization of rifapentine microsphere-loaded bone implants: a sustained drug delivery system.
    Wang Z; Song X; Yang H; Maimaitiaili A; Wang T
    Ann Palliat Med; 2020 Mar; 9(2):375-387. PubMed ID: 32233632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of dual delivery antituberculotic system containing rifapentine microspheres and adipose stem cells seeded in hydroxyapatite/tricalcium phosphate.
    Liang Q; Song X; She S; Wang Z; Wang C; Jiang D
    Drug Des Devel Ther; 2019; 13():373-384. PubMed ID: 30705585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on cytotoxicity of three-dimensional printed β-tricalcium phosphate loaded poly (lactide-co-glycolide) anti-tuberculosis drug sustained release microspheres and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells].
    Gong D; Ma Y; Yang X; Xie W; Shao L; Zhen P
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1131-1136. PubMed ID: 30129348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rifapentine Polylactic Acid Sustained-Release Microsphere Complex for Spinal Tuberculosis Therapy: Preparation, in vitro and in vivo Studies.
    Wang Z; Maimaitiaili A; Wang T; Song X
    Infect Drug Resist; 2021; 14():1781-1794. PubMed ID: 34025123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bioactive implant in situ and long-term releases combined drugs for treatment of osteoarticular tuberculosis.
    Zhou CX; Li L; Ma YG; Li BN; Li G; Zhou Z; Shi F; Weng J; Zhang C; Wang F; Cui X; Wang L; Wang H
    Biomaterials; 2018 Sep; 176():50-59. PubMed ID: 29857274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and in vitro characterization of drug delivery system of rifapentine for osteoarticular tuberculosis.
    Wu J; Zuo Y; Hu Y; Wang J; Li J; Qiao B; Jiang D
    Drug Des Devel Ther; 2015; 9():1359-66. PubMed ID: 25834394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release characteristics of bone‑like hydroxyapatite/poly amino acid loaded with rifapentine microspheres in vivo.
    Liu Y; Zhu J; Jiang D
    Mol Med Rep; 2017 Aug; 16(2):1425-1430. PubMed ID: 28627673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rifapentine-linezolid-loaded PLGA microspheres for interventional therapy of cavitary pulmonary tuberculosis: preparation and in vitro characterization.
    Huang J; Chen Z; Li Y; Li L; Zhang G
    Drug Des Devel Ther; 2017; 11():585-592. PubMed ID: 28424536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres on bone and joint tuberculosis in vitro.
    Liu Y; Jiang D
    Cell Biol Int; 2017 Apr; 41(4):369-373. PubMed ID: 28102559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of Staphylococcus aureus-induced chronic osteomyelitis with bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres.
    Yan L; Jiang DM; Cao ZD; Wu J; Wang X; Wang ZL; Li YJ; Yi YF
    Drug Des Devel Ther; 2015; 9():3665-76. PubMed ID: 26213463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.
    Zhang HX; Xiao GY; Wang X; Dong ZG; Ma ZY; Li L; Li YH; Pan X; Nie L
    J Biomed Mater Res A; 2015 Oct; 103(10):3250-8. PubMed ID: 25809455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications.
    Shi X; Wang Y; Ren L; Gong Y; Wang DA
    Pharm Res; 2009 Feb; 26(2):422-30. PubMed ID: 18979188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of bone repair mediated by recombination BMP-2/ recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite.
    Zeng J; Xiong S; Ding L; Zhou J; Li J; Qiu P; Liao X; Xiong L; Long Z; Liu S
    Life Sci; 2019 Oct; 234():116743. PubMed ID: 31408660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of CaCO
    Gong Y; Zhang Y; Cao Z; Ye F; Lin Z; Li Y
    Biomater Sci; 2019 Aug; 7(9):3614-3626. PubMed ID: 31210206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study.
    Kasten P; Beyen I; Niemeyer P; Luginbühl R; Bohner M; Richter W
    Acta Biomater; 2008 Nov; 4(6):1904-15. PubMed ID: 18571999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres.
    Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L
    Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro.
    Zhang L; Zhang J; Ling Y; Chen C; Liang A; Peng Y; Chang H; Su P; Huang D
    J Pineal Res; 2013 Jan; 54(1):24-32. PubMed ID: 22712496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L
    J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Repair of calvarial defect using a tissue-engineered bone with simvastatin-loaded β-tricalcium phosphate scaffold and adipose derived stem cells in rabbits].
    Xu LY; Sun XJ; Zhang XL; Jin YQ; Wu YQ; Jiang XQ
    Shanghai Kou Qiang Yi Xue; 2013 Aug; 22(4):361-7. PubMed ID: 24100891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.