These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32234071)

  • 1. Genomic and transcriptomic evidence of light-sensing, porphyrin biosynthesis, Calvin-Benson-Bassham cycle, and urea production in Bathyarchaeota.
    Pan J; Zhou Z; Béjà O; Cai M; Yang Y; Liu Y; Gu JD; Li M
    Microbiome; 2020 Mar; 8(1):43. PubMed ID: 32234071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments.
    He Y; Li M; Perumal V; Feng X; Fang J; Xie J; Sievert SM; Wang F
    Nat Microbiol; 2016 Apr; 1(6):16035. PubMed ID: 27572832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertical Distribution of Bathyarchaeotal Communities in Mangrove Wetlands Suggests Distinct Niche Preference of Bathyarchaeota Subgroup 6.
    Pan J; Chen Y; Wang Y; Zhou Z; Li M
    Microb Ecol; 2019 Feb; 77(2):417-428. PubMed ID: 30612184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenomic Analysis of Metagenome-Assembled Genomes Deciphered Novel Acetogenic Nitrogen-Fixing
    Deb S; Das SK
    Microbiol Spectr; 2022 Jun; 10(3):e0035222. PubMed ID: 35647693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota.
    Liu Y; Zhou Z; Pan J; Baker BJ; Gu JD; Li M
    ISME J; 2018 Apr; 12(4):1021-1031. PubMed ID: 29445130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments.
    Lazar CS; Baker BJ; Seitz K; Hyde AS; Dick GJ; Hinrichs KU; Teske AP
    Environ Microbiol; 2016 Apr; 18(4):1200-11. PubMed ID: 26626228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea).
    Zhou Z; Liu Y; Lloyd KG; Pan J; Yang Y; Gu JD; Li M
    ISME J; 2019 Apr; 13(4):885-901. PubMed ID: 30514872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High occurrence of Bathyarchaeota (MCG) in the deep-sea sediments of South China Sea quantified using newly designed PCR primers.
    Yu T; Liang Q; Niu M; Wang F
    Environ Microbiol Rep; 2017 Aug; 9(4):374-382. PubMed ID: 28419783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments.
    Dombrowski N; Seitz KW; Teske AP; Baker BJ
    Microbiome; 2017 Aug; 5(1):106. PubMed ID: 28835260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.
    Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R
    Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abundance and Co-Distribution of Widespread Marine Archaeal Lineages in Surface Sediments of Freshwater Water Bodies across the Iberian Peninsula.
    Compte-Port S; Subirats J; Fillol M; Sànchez-Melsió A; Marcé R; Rivas-Ruiz P; Rosell-Melé A; Borrego CM
    Microb Ecol; 2017 Nov; 74(4):776-787. PubMed ID: 28508926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Successive transitory distribution of Thaumarchaeota and partitioned distribution of Bathyarchaeota from the Pearl River estuary to the northern South China Sea.
    Zhou Z; Zhang GX; Xu YB; Gu JD
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):8035-8048. PubMed ID: 29946932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic potentials of archaeal lineages resolved from metagenomes of deep Costa Rica sediments.
    Farag IF; Biddle JF; Zhao R; Martino AJ; House CH; León-Zayas RI
    ISME J; 2020 Jun; 14(6):1345-1358. PubMed ID: 32066876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of sedimentary
    Yu T; Wu W; Liang W; Lever MA; Hinrichs KU; Wang F
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):6022-6027. PubMed ID: 29773709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planktonic/benthic Bathyarchaeota as a "gatekeeper" enhance archaeal nonrandom co-existence and deterministic assembling in the Yangtze River.
    Liu S; Lin Y; Liu T; Xu X; Wang J; Chen Q; Sun W; Dang C; Ni J
    Water Res; 2023 Dec; 247():120829. PubMed ID: 37976624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse Bathyarchaeotal Lineages Dominate Archaeal Communities in the Acidic Dajiuhu Peatland, Central China.
    Xiang X; Wang H; Man B; Xu Y; Gong L; Tian W; Yang H
    Microb Ecol; 2023 Feb; 85(2):557-571. PubMed ID: 35332366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments.
    Zhou Z; Pan J; Wang F; Gu JD; Li M
    FEMS Microbiol Rev; 2018 Sep; 42(5):639-655. PubMed ID: 29790926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic versatility of freshwater sedimentary archaea feeding on different organic carbon sources.
    Compte-Port S; Fillol M; Gich F; Borrego CM
    PLoS One; 2020; 15(4):e0231238. PubMed ID: 32267873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways.
    De Anda V; Chen LX; Dombrowski N; Hua ZS; Jiang HC; Banfield JF; Li WJ; Baker BJ
    Nat Commun; 2021 Apr; 12(1):2404. PubMed ID: 33893309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life.
    Spang A; Caceres EF; Ettema TJG
    Science; 2017 Aug; 357(6351):. PubMed ID: 28798101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.