These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32234231)

  • 1. Plant stress biology in epigenomic era.
    Perrone A; Martinelli F
    Plant Sci; 2020 May; 294():110376. PubMed ID: 32234231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the Epigenetic Alphabet Involved in Transgenerational Stress Memory in Crops.
    Mladenov V; Fotopoulos V; Kaiserli E; Karalija E; Maury S; Baranek M; Segal N; Testillano PS; Vassileva V; Pinto G; Nagel M; Hoenicka H; Miladinović D; Gallusci P; Vergata C; Kapazoglou A; Abraham E; Tani E; Gerakari M; Sarri E; Avramidou E; Gašparović M; Martinelli F
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activating stress memory: eustressors as potential tools for plant breeding.
    Villagómez-Aranda AL; Feregrino-Pérez AA; García-Ortega LF; González-Chavira MM; Torres-Pacheco I; Guevara-González RG
    Plant Cell Rep; 2022 Jul; 41(7):1481-1498. PubMed ID: 35305133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant Epigenetic Stress Memory Induced by Drought: A Physiological and Molecular Perspective.
    Godwin J; Farrona S
    Methods Mol Biol; 2020; 2093():243-259. PubMed ID: 32088901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives.
    Singh D; Chaudhary P; Taunk J; Kumar Singh C; Sharma S; Singh VJ; Singh D; Chinnusamy V; Yadav R; Pal M
    J Exp Bot; 2021 Oct; 72(20):6836-6855. PubMed ID: 34302734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring miRNAs for developing climate-resilient crops: A perspective review.
    Xu J; Hou QM; Khare T; Verma SK; Kumar V
    Sci Total Environ; 2019 Feb; 653():91-104. PubMed ID: 30408672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects and challenges of epigenomics in crop improvement.
    Huang Y; Liu Y; Liu C; Birchler JA; Han F
    Genes Genomics; 2022 Mar; 44(3):251-257. PubMed ID: 34837632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Omics Approaches for Engineering Wheat Production under Abiotic Stresses.
    Shah T; Xu J; Zou X; Cheng Y; Nasir M; Zhang X
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30110906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant Stress Responses and Phenotypic Plasticity in the Epigenomics Era: Perspectives on the Grapevine Scenario, a Model for Perennial Crop Plants.
    Fortes AM; Gallusci P
    Front Plant Sci; 2017; 8():82. PubMed ID: 28220131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome instability and epigenetic modification--heritable responses to environmental stress?
    Boyko A; Kovalchuk I
    Curr Opin Plant Biol; 2011 Jun; 14(3):260-6. PubMed ID: 21440490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant synthetic epigenomic engineering for crop improvement.
    Yang L; Zhang P; Wang Y; Hu G; Guo W; Gu X; Pu L
    Sci China Life Sci; 2022 Nov; 65(11):2191-2204. PubMed ID: 35851940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability.
    Kumar A; Pathak RK; Gupta SM; Gaur VS; Pandey D
    OMICS; 2015 Oct; 19(10):581-601. PubMed ID: 26484978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity.
    De Block M; Van Lijsebettens M
    Curr Opin Plant Biol; 2011 Jun; 14(3):275-82. PubMed ID: 21411363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenomics as Potential Tools for Enhancing Magnitude of Breeding Approaches for Developing Climate Resilient Chickpea.
    Chandana BS; Mahto RK; Singh RK; Ford R; Vaghefi N; Gupta SK; Yadav HK; Manohar M; Kumar R
    Front Genet; 2022; 13():900253. PubMed ID: 35937986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant response to biotic stress: Is there a common epigenetic response during plant-pathogenic and symbiotic interactions?
    Zogli P; Libault M
    Plant Sci; 2017 Oct; 263():89-93. PubMed ID: 28818387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement.
    Vriet C; Hennig L; Laloi C
    Cell Mol Life Sci; 2015 Apr; 72(7):1261-73. PubMed ID: 25578097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective.
    Muthamilarasan M; Singh NK; Prasad M
    Adv Genet; 2019; 103():1-38. PubMed ID: 30904092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.