These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Remodeling of the interdomain allosteric linker upon membrane binding of CCTα pulls its active site close to the membrane surface. Knowles DG; Lee J; Taneva SG; Cornell RB J Biol Chem; 2019 Oct; 294(42):15531-15543. PubMed ID: 31488548 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of a mammalian CTP: phosphocholine cytidylyltransferase catalytic domain reveals novel active site residues within a highly conserved nucleotidyltransferase fold. Lee J; Johnson J; Ding Z; Paetzel M; Cornell RB J Biol Chem; 2009 Nov; 284(48):33535-48. PubMed ID: 19783652 [TBL] [Abstract][Full Text] [Related]
4. Interdomain communication in the phosphatidylcholine regulatory enzyme, CCTα, relies on a modular αE helix. Taneva SG; Lee J; Knowles DG; Tishyadhigama C; Chen H; Cornell RB J Biol Chem; 2019 Oct; 294(42):15517-15530. PubMed ID: 31488547 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for autoinhibition of CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in phosphatidylcholine synthesis, by its membrane-binding amphipathic helix. Lee J; Taneva SG; Holland BW; Tieleman DP; Cornell RB J Biol Chem; 2014 Jan; 289(3):1742-55. PubMed ID: 24275660 [TBL] [Abstract][Full Text] [Related]
6. An auto-inhibitory helix in CTP:phosphocholine cytidylyltransferase hijacks the catalytic residue and constrains a pliable, domain-bridging helix pair. Ramezanpour M; Lee J; Taneva SG; Tieleman DP; Cornell RB J Biol Chem; 2018 May; 293(18):7070-7084. PubMed ID: 29519816 [TBL] [Abstract][Full Text] [Related]
7. A 22-mer segment in the structurally pliable regulatory domain of metazoan CTP: phosphocholine cytidylyltransferase facilitates both silencing and activating functions. Ding Z; Taneva SG; Huang HK; Campbell SA; Semenec L; Chen N; Cornell RB J Biol Chem; 2012 Nov; 287(46):38980-91. PubMed ID: 22988242 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary and mechanistic insights into substrate and product accommodation of CTP:phosphocholine cytidylyltransferase from Plasmodium falciparum. Nagy GN; Marton L; Krámos B; Oláh J; Révész Á; Vékey K; Delsuc F; Hunyadi-Gulyás É; Medzihradszky KF; Lavigne M; Vial H; Cerdan R; Vértessy BG FEBS J; 2013 Jul; 280(13):3132-48. PubMed ID: 23578277 [TBL] [Abstract][Full Text] [Related]
9. Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Cornell RB; Northwood IC Trends Biochem Sci; 2000 Sep; 25(9):441-7. PubMed ID: 10973058 [TBL] [Abstract][Full Text] [Related]
10. The membrane-binding domain of an amphitropic enzyme suppresses catalysis by contact with an amphipathic helix flanking its active site. Huang HK; Taneva SG; Lee J; Silva LP; Schriemer DC; Cornell RB J Mol Biol; 2013 May; 425(9):1546-64. PubMed ID: 23238251 [TBL] [Abstract][Full Text] [Related]
11. Contribution of each membrane binding domain of the CTP:phosphocholine cytidylyltransferase-alpha dimer to its activation, membrane binding, and membrane cross-bridging. Taneva S; Dennis MK; Ding Z; Smith JL; Cornell RB J Biol Chem; 2008 Oct; 283(42):28137-48. PubMed ID: 18694933 [TBL] [Abstract][Full Text] [Related]
12. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase. Johnson JE; Rao NM; Hui SW; Cornell RB Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334 [TBL] [Abstract][Full Text] [Related]
13. Membrane lipid compositional sensing by the inducible amphipathic helix of CCT. Cornell RB Biochim Biophys Acta; 2016 Aug; 1861(8 Pt B):847-861. PubMed ID: 26747646 [TBL] [Abstract][Full Text] [Related]
14. Identification of lysine 122 and arginine 196 as important functional residues of rat CTP:phosphocholine cytidylyltransferase alpha. Helmink BA; Braker JD; Kent C; Friesen JA Biochemistry; 2003 May; 42(17):5043-51. PubMed ID: 12718547 [TBL] [Abstract][Full Text] [Related]
15. The association of lipid activators with the amphipathic helical domain of CTP:phosphocholine cytidylyltransferase accelerates catalysis by increasing the affinity of the enzyme for CTP. Yang W; Boggs KP; Jackowski S J Biol Chem; 1995 Oct; 270(41):23951-7. PubMed ID: 7592590 [TBL] [Abstract][Full Text] [Related]
16. Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability. Cornell RB; Taneva SG; Dennis MK; Tse R; Dhillon RK; Lee J J Biol Chem; 2019 Feb; 294(5):1490-1501. PubMed ID: 30559292 [TBL] [Abstract][Full Text] [Related]
17. How cytidylyltransferase uses an amphipathic helix to sense membrane phospholipid composition. Cornell RB Biochem Soc Trans; 1998 Aug; 26(3):539-44. PubMed ID: 9765910 [TBL] [Abstract][Full Text] [Related]
18. CTP:phosphocholine cytidylyltransferase. Kent C Biochim Biophys Acta; 1997 Sep; 1348(1-2):79-90. PubMed ID: 9370319 [TBL] [Abstract][Full Text] [Related]
19. Lipid activation of CTP: phosphocholine cytidylyltransferase alpha: characterization and identification of a second activation domain. Lykidis A; Jackson P; Jackowski S Biochemistry; 2001 Jan; 40(2):494-503. PubMed ID: 11148044 [TBL] [Abstract][Full Text] [Related]
20. CTP:phosphocholine cytidylyltransferase: insights into regulatory mechanisms and novel functions. Clement JM; Kent C Biochem Biophys Res Commun; 1999 Apr; 257(3):643-50. PubMed ID: 10208837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]