These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 32234434)

  • 21. Algae as a potential source of protein meat alternatives.
    Espinosa-Ramírez J; Mondragón-Portocarrero AC; Rodríguez JA; Lorenzo JM; Santos EM
    Front Nutr; 2023; 10():1254300. PubMed ID: 37743912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paediatric Medicinal Formulation Development: Utilising Human Taste Panels and Incorporating Their Data into Machine Learning Training.
    Yoo O; von Ungern-Sternberg BS; Lim LY
    Pharmaceutics; 2023 Aug; 15(8):. PubMed ID: 37631326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bitter Peptides in Fermented Soybean Foods - A Review.
    Jiang S; Wang X; Yu M; Tian J; Chang P; Zhu S
    Plant Foods Hum Nutr; 2023 Jun; 78(2):261-269. PubMed ID: 37410257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Machine Learning Method to Identify Umami Peptide Sequences by Using Multiplicative LSTM Embedded Features.
    Jiang J; Li J; Li J; Pei H; Li M; Zou Q; Lv Z
    Foods; 2023 Apr; 12(7):. PubMed ID: 37048319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Empirical comparison and recent advances of computational prediction of hormone binding proteins using machine learning methods.
    Zulfiqar H; Guo Z; Grace-Mercure BK; Zhang ZY; Gao H; Lin H; Wu Y
    Comput Struct Biotechnol J; 2023; 21():2253-2261. PubMed ID: 37035551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bitter-RF: A random forest machine model for recognizing bitter peptides.
    Zhang YF; Wang YH; Gu ZF; Pan XR; Li J; Ding H; Zhang Y; Deng KJ
    Front Med (Lausanne); 2023; 10():1052923. PubMed ID: 36778738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach.
    Pallante L; Korfiati A; Androutsos L; Stojceski F; Bompotas A; Giannikos I; Raftopoulos C; Malavolta M; Grasso G; Mavroudi S; Kalogeras A; Martos V; Amoroso D; Piga D; Theofilatos K; Deriu MA
    Sci Rep; 2022 Dec; 12(1):21735. PubMed ID: 36526644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IUP-BERT: Identification of Umami Peptides Based on BERT Features.
    Jiang L; Jiang J; Wang X; Zhang Y; Zheng B; Liu S; Zhang Y; Liu C; Wan Y; Xiang D; Lv Z
    Foods; 2022 Nov; 11(22):. PubMed ID: 36429332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bitter Peptides YFYPEL, VAPFPEVF, and YQEPVLGPVRGPFPIIV, Released during Gastric Digestion of Casein, Stimulate Mechanisms of Gastric Acid Secretion
    Richter P; Sebald K; Fischer K; Behrens M; Schnieke A; Somoza V
    J Agric Food Chem; 2022 Sep; 70(37):11591-11602. PubMed ID: 36054030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent development of machine learning-based methods for the prediction of defensin family and subfamily.
    Charoenkwan P; Schaduangrat N; Mahmud SMH; Thinnukool O; Shoombuatong W
    EXCLI J; 2022; 21():757-771. PubMed ID: 35949489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identify Bitter Peptides by Using Deep Representation Learning Features.
    Jiang J; Lin X; Jiang Y; Jiang L; Lv Z
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AntiDMPpred: a web service for identifying anti-diabetic peptides.
    Chen X; Huang J; He B
    PeerJ; 2022; 10():e13581. PubMed ID: 35722269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A survey on computational taste predictors.
    Malavolta M; Pallante L; Mavkov B; Stojceski F; Grasso G; Korfiati A; Mavroudi S; Kalogeras A; Alexakos C; Martos V; Amoroso D; Di Benedetto G; Piga D; Theofilatos K; Deriu MA
    Eur Food Res Technol; 2022; 248(9):2215-2235. PubMed ID: 35637881
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Rojas C; Ballabio D; Pacheco Sarmiento K; Pacheco Jaramillo E; Mendoza M; García F
    Food Chem (Oxf); 2022 Jul; 4():100090. PubMed ID: 35415670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Characterization of Structure and Prediction for Aquaporin in Tumour Progression by Machine Learning.
    Chen Z; Jiao S; Zhao D; Zou Q; Xu L; Zhang L; Su X
    Front Cell Dev Biol; 2022; 10():845622. PubMed ID: 35178393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-scale comparative review and assessment of computational methods for phage virion proteins identification.
    Kabir M; Nantasenamat C; Kanthawong S; Charoenkwan P; Shoombuatong W
    EXCLI J; 2022; 21():11-29. PubMed ID: 35145365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. StackHCV: a web-based integrative machine-learning framework for large-scale identification of hepatitis C virus NS5B inhibitors.
    Malik AA; Chotpatiwetchkul W; Phanus-Umporn C; Nantasenamat C; Charoenkwan P; Shoombuatong W
    J Comput Aided Mol Des; 2021 Oct; 35(10):1037-1053. PubMed ID: 34622387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. iBitter-Fuse: A Novel Sequence-Based Bitter Peptide Predictor by Fusing Multi-View Features.
    Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Lio' P; Shoombuatong W
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. iPMI: Machine Learning-Aided Identification of Parametrial Invasion in Women with Early-Stage Cervical Cancer.
    Charoenkwan P; Shoombuatong W; Nantasupha C; Muangmool T; Suprasert P; Charoenkwan K
    Diagnostics (Basel); 2021 Aug; 11(8):. PubMed ID: 34441388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Improved Computational Prediction Model for Lysine Succinylation Sites Mapping on
    Tasmia SA; Ahmed FF; Mosharaf P; Hasan M; Mollah NH
    Curr Genomics; 2021 Feb; 22(2):122-136. PubMed ID: 34220299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.