These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32235062)

  • 1. Deep learning based methods for gamma ray interaction location estimation in monolithic scintillation crystal detectors.
    Tao L; Li X; Furenlid LR; Levin CS
    Phys Med Biol; 2020 Jun; 65(11):115007. PubMed ID: 32235062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of long rectangular semi-monolithic scintillator PET detectors.
    Zhang X; Wang X; Ren N; Hu B; Ding B; Kuang Z; Wu S; Sang Z; Hu Z; Du J; Liang D; Liu X; Zheng H; Yang Y
    Med Phys; 2019 Apr; 46(4):1608-1619. PubMed ID: 30723932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards monolithic scintillator based TOF-PET systems: practical methods for detector calibration and operation.
    Borghi G; Tabacchini V; Schaart DR
    Phys Med Biol; 2016 Jul; 61(13):4904-28. PubMed ID: 27285955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast gamma-ray interaction-position estimation using k-d tree search.
    Li X; Tao L; Levin CS; Furenlid LR
    Phys Med Biol; 2019 Aug; 64(15):155018. PubMed ID: 30844778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise positioning of gamma ray interactions in multiplexed pixelated scintillators using artificial neural networks.
    Correia PMM; Cruzeiro B; Dias J; Encarnação PMCC; Ribeiro FM; Rodrigues CA; Silva ALM
    Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38779912
    [No Abstract]   [Full Text] [Related]  

  • 6. Time-based position estimation in monolithic scintillator detectors.
    Tabacchini V; Borghi G; Schaart DR
    Phys Med Biol; 2015 Jul; 60(14):5513-25. PubMed ID: 26133784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using convolutional neural networks to estimate time-of-flight from PET detector waveforms.
    Berg E; Cherry SR
    Phys Med Biol; 2018 Jan; 63(2):02LT01. PubMed ID: 29182151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast calibration of SPECT monolithic scintillation detectors using un-collimated sources.
    España S; Deprez K; Van Holen R; Vandenberghe S
    Phys Med Biol; 2013 Jul; 58(14):4807-25. PubMed ID: 23787300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An edge-readout, multilayer detector for positron emission tomography.
    Li X; Ruiz-Gonzalez M; Furenlid LR
    Med Phys; 2018 Jun; 45(6):2425-2438. PubMed ID: 29635734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved event positioning in a gamma ray detector using an iterative position-weighted centre-of-gravity algorithm.
    Liu CY; Goertzen AL
    Phys Med Biol; 2013 Jul; 58(14):N189-200. PubMed ID: 23798644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial neural networks for positioning of gamma interactions in monolithic PET detectors.
    Decuyper M; Stockhoff M; Vandenberghe S; Van Holen R
    Phys Med Biol; 2021 Mar; 66(7):. PubMed ID: 33662940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a SiPM based semi-monolithic scintillator PET detector.
    Zhang X; Wang X; Ren N; Kuang Z; Deng X; Fu X; Wu S; Sang Z; Hu Z; Liang D; Liu X; Zheng H; Yang Y
    Phys Med Biol; 2017 Sep; 62(19):7889-7904. PubMed ID: 28858853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation.
    van Dam HT; Borghi G; Seifert S; Schaart DR
    Phys Med Biol; 2013 May; 58(10):3243-57. PubMed ID: 23611889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum likelihood positioning and energy correction for scintillation detectors.
    Lerche CW; Salomon A; Goldschmidt B; Lodomez S; Weissler B; Solf T
    Phys Med Biol; 2016 Feb; 61(4):1650-76. PubMed ID: 26836394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D position estimation using an artificial neural network for a continuous scintillator PET detector.
    Wang Y; Zhu W; Cheng X; Li D
    Phys Med Biol; 2013 Mar; 58(5):1375-90. PubMed ID: 23399593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolution estimation in different monolithic PET detectors using neural networks.
    Belov MV; Kozlov VA; Tskhay VS; Zavertyaev MV
    Phys Med; 2023 Feb; 106():102527. PubMed ID: 36610177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models.
    Schellenberg G; Stortz G; Goertzen AL
    Phys Med Biol; 2016 Feb; 61(3):N90-N101. PubMed ID: 26794058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudo-Gamma Spectroscopy Based on Plastic Scintillation Detectors Using Multitask Learning.
    Jeon B; Kim J; Lee E; Moon M; Cho G
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limits on the spatial resolution of monolithic scintillators read out by APD arrays.
    van der Laan DJ; Maas MC; Bruyndonckx P; Schaart DR
    Phys Med Biol; 2012 Oct; 57(20):6479-96. PubMed ID: 23001515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal separation of Cerenkov radiation and scintillation using a clinical LINAC and artificial intelligence.
    Madden L; Archer J; Li E; Wilkinson D; Rosenfeld A
    Phys Med Biol; 2018 Nov; 63(22):225004. PubMed ID: 30412477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.