BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

623 related articles for article (PubMed ID: 32235097)

  • 1. Immune escape and immunotherapy of acute myeloid leukemia.
    Vago L; Gojo I
    J Clin Invest; 2020 Apr; 130(4):1552-1564. PubMed ID: 32235097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catch me if you can: how AML and its niche escape immunotherapy.
    Tettamanti S; Pievani A; Biondi A; Dotti G; Serafini M
    Leukemia; 2022 Jan; 36(1):13-22. PubMed ID: 34302116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunotherapy in leukaemia.
    Mu X; Chen C; Dong L; Kang Z; Sun Z; Chen X; Zheng J; Zhang Y
    Acta Biochim Biophys Sin (Shanghai); 2023 Jun; 55(6):974-987. PubMed ID: 37272727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural killer cell immune escape in acute myeloid leukemia.
    Lion E; Willemen Y; Berneman ZN; Van Tendeloo VF; Smits EL
    Leukemia; 2012 Sep; 26(9):2019-26. PubMed ID: 22446501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing the Immune System Against Leukemia: Monoclonal Antibodies and Checkpoint Strategies for AML.
    Masarova L; Kantarjian H; Garcia-Mannero G; Ravandi F; Sharma P; Daver N
    Adv Exp Med Biol; 2017; 995():73-95. PubMed ID: 28321813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia.
    Anguille S; Van Tendeloo VF; Berneman ZN
    Leukemia; 2012 Oct; 26(10):2186-96. PubMed ID: 22652755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment.
    Isidori A; Salvestrini V; Ciciarello M; Loscocco F; Visani G; Parisi S; Lecciso M; Ocadlikova D; Rossi L; Gabucci E; Clissa C; Curti A
    Expert Rev Hematol; 2014 Dec; 7(6):807-18. PubMed ID: 25227702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The progress and current status of immunotherapy in acute myeloid leukemia.
    Yang D; Zhang X; Zhang X; Xu Y
    Ann Hematol; 2017 Dec; 96(12):1965-1982. PubMed ID: 29080982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute myeloid leukaemia and the immune system: implications for immunotherapy.
    Barrett AJ
    Br J Haematol; 2020 Jan; 188(1):147-158. PubMed ID: 31782805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in immunotherapy for pediatric acute myeloid leukemia.
    Bonifant CL; Velasquez MP; Gottschalk S
    Expert Opin Biol Ther; 2018 Jan; 18(1):51-63. PubMed ID: 28945115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune checkpoint inhibitors.
    Assi R; Kantarjian H; Ravandi F; Daver N
    Curr Opin Hematol; 2018 Mar; 25(2):136-145. PubMed ID: 29206680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic cancer vaccine therapy for acute myeloid leukemia.
    Wu M; Wang S; Chen JY; Zhou LJ; Guo ZW; Li YH
    Immunotherapy; 2021 Jul; 13(10):863-877. PubMed ID: 33955237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RepSox slows decay of CD34+ acute myeloid leukemia cells and decreases T cell immunoglobulin mucin-3 expression.
    Jajosky AN; Coad JE; Vos JA; Martin KH; Senft JR; Wenger SL; Gibson LF
    Stem Cells Transl Med; 2014 Jul; 3(7):836-48. PubMed ID: 24855276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunotherapy for acute myeloid leukemia (AML): a potent alternative therapy.
    Acheampong DO; Adokoh CK; Asante DB; Asiamah EA; Barnie PA; Bonsu DOM; Kyei F
    Biomed Pharmacother; 2018 Jan; 97():225-232. PubMed ID: 29091870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic targeting to enhance acute myeloid leukemia-directed immunotherapy.
    Rausch J; Ullrich E; Kühn MWM
    Front Immunol; 2023; 14():1269012. PubMed ID: 37809078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Update on Immunotherapy in AML and MDS: Monoclonal Antibodies and Checkpoint Inhibitors Paving the Road for Clinical Practice.
    Masarova L; Kantarjian H; Ravandi F; Sharma P; Garcia-Manero G; Daver N
    Adv Exp Med Biol; 2018; 995():97-116. PubMed ID: 30539507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A potential area of use for immune checkpoint inhibitors: Targeting bone marrow microenvironment in acute myeloid leukemia.
    Aru B; Pehlivanoğlu C; Dal Z; Dereli-Çalışkan NN; Gürlü E; Yanıkkaya-Demirel G
    Front Immunol; 2023; 14():1108200. PubMed ID: 36742324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunotherapeutic strategies for relapse control in acute myeloid leukemia.
    Martner A; Thorén FB; Aurelius J; Hellstrand K
    Blood Rev; 2013 Sep; 27(5):209-16. PubMed ID: 23871358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunotherapeutic Concepts to Target Acute Myeloid Leukemia: Focusing on the Role of Monoclonal Antibodies, Hypomethylating Agents and the Leukemic Microenvironment.
    Gbolahan OB; Zeidan AM; Stahl M; Abu Zaid M; Farag S; Paczesny S; Konig H
    Int J Mol Sci; 2017 Jul; 18(8):. PubMed ID: 28758974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new era of immuno-oncology in acute myeloid leukemia - antibody-based therapies and immune checkpoint inhibition.
    Koshy AG; Daver NG; Fathi AT
    Best Pract Res Clin Haematol; 2020 Dec; 33(4):101220. PubMed ID: 33279176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.