These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32235583)

  • 21. The Effects of Cold Arm Width and Metal Deposition on the Performance of a U-Beam Electrothermal MEMS Microgripper for Biomedical Applications.
    Cauchi M; Grech I; Mallia B; Mollicone P; Sammut N
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30823372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of Thin-film Piezoelectric Microactuators with Large Vertical Stroke Subject to Multi-axis Coupling and Fabrication Asymmetries.
    Choi J; Wang T; Oldham K
    J Micromech Microeng; 2018 Jan; 28(1):. PubMed ID: 30147249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering by Cuts: How Kirigami Principle Enables Unique Mechanical Properties and Functionalities.
    Tao J; Khosravi H; Deshpande V; Li S
    Adv Sci (Weinh); 2022 Oct; 10(1):e2204733. PubMed ID: 36310142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aluminum Nitride Out-of-Plane Piezoelectric MEMS Actuators.
    Rabih AAS; Kazemi M; Ménard M; Nabki F
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MEMS-tunable dielectric metasurface lens using thin-film PZT for large displacements at low voltages.
    Dirdal CA; Thrane PCV; Dullo FT; Gjessing J; Summanwar A; Tschudi J
    Opt Lett; 2022 Mar; 47(5):1049-1052. PubMed ID: 35230287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultralow-voltage electrothermal MEMS based fiber-optic scanning probe for forward-viewing endoscopic OCT.
    Park HC; Zhang X; Yuan W; Zhou L; Xie H; Li X
    Opt Lett; 2019 May; 44(9):2232-2235. PubMed ID: 31042191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates.
    Zheng M; Chen Y; Liu Z; Liu Y; Wang Y; Liu P; Liu Q; Bi K; Shu Z; Zhang Y; Duan H
    Microsyst Nanoeng; 2019; 5():54. PubMed ID: 31814993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Programmable active kirigami metasheets with more freedom of actuation.
    Tang Y; Li Y; Hong Y; Yang S; Yin J
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26407-26413. PubMed ID: 31843912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupled Finite Element-Finite Volume Multi-Physics Analysis of MEMS Electrothermal Actuators.
    Sciberras T; Demicoli M; Grech I; Mallia B; Mollicone P; Sammut N
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MEMS Tunable Diffraction Grating for Spaceborne Imaging Spectroscopic Applications.
    Muttikulangara SS; Baranski M; Rehman S; Hu L; Miao J
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29039765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror.
    Zhang H; Xu D; Zhang X; Chen Q; Xie H; Li S
    Sensors (Basel); 2015 Dec; 15(12):30991-1004. PubMed ID: 26690432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of Vertical MEMS Actuator with Hollow Square Electrode for SPR Sensing Applications.
    Kim K; Lee Y; Llamas-Garro I; Kim JM
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kirigami-Based Light-Induced Shape-Morphing and Locomotion.
    Cheng YC; Lu HC; Lee X; Zeng H; Priimagi A
    Adv Mater; 2020 Feb; 32(7):e1906233. PubMed ID: 31834665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simple Approach to High-Performance Stretchable Heaters Based on Kirigami Patterning of Conductive Paper for Wearable Thermotherapy Applications.
    Jang NS; Kim KH; Ha SH; Jung SH; Lee HM; Kim JM
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19612-19621. PubMed ID: 28534393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Origami and Kirigami Nanocomposites.
    Xu L; Shyu TC; Kotov NA
    ACS Nano; 2017 Aug; 11(8):7587-7599. PubMed ID: 28735531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe.
    Mu X; Zhou G; Yu H; Du Y; Feng H; Tsai JM; Chau FS
    Opt Express; 2012 Mar; 20(6):6325-39. PubMed ID: 22418514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling and Experimental Verification of Step Response Overshoot Removal in Electrothermally-Actuated MEMS Mirrors.
    Li M; Chen Q; Liu Y; Ding Y; Xie H
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and Fabrication of a Push-Pull Electrostatic Actuated Cantilever Waveguide Scanner.
    Wang WC; Gu K; Tsui C
    Micromachines (Basel); 2019 Jun; 10(7):. PubMed ID: 31261955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electromagnetic Control by Actuating Kirigami-Inspired Shape Memory Alloy: Thermally Reconfigurable Antenna application.
    Lee M; Lee S; Lim S
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theorem for the design of deployable kirigami tessellations with different topologies.
    Dang X; Feng F; Duan H; Wang J
    Phys Rev E; 2021 Nov; 104(5-2):055006. PubMed ID: 34942760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.