These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32235583)

  • 41. Kirigami-based Elastic Metamaterials with Anisotropic Mass Density for Subwavelength Flexural Wave Control.
    Zhu R; Yasuda H; Huang GL; Yang JK
    Sci Rep; 2018 Jan; 8(1):483. PubMed ID: 29323177
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3 degree-of-freedom resonant scanner with full-circumferential range and large out-of-plane displacement.
    Li H; Oldham KR; Wang TD
    Opt Express; 2019 May; 27(11):16296-16307. PubMed ID: 31163809
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanomechanical Characterization of Vertical Nanopillars Using an MEMS-SPM Nano-Bending Testing Platform.
    Li Z; Gao S; Brand U; Hiller K; Hahn S; Hamdana G; Peiner E; Wolff H; Bergmann D
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635250
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal and electronic transport characteristics of highly stretchable graphene kirigami.
    Mortazavi B; Lherbier A; Fan Z; Harju A; Rabczuk T; Charlier JC
    Nanoscale; 2017 Nov; 9(42):16329-16341. PubMed ID: 29051943
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kirigami-Inspired Inflatables with Programmable Shapes.
    Jin L; Forte AE; Deng B; Rafsanjani A; Bertoldi K
    Adv Mater; 2020 Aug; 32(33):e2001863. PubMed ID: 32627259
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices.
    Algamili AS; Khir MHM; Dennis JO; Ahmed AY; Alabsi SS; Ba Hashwan SS; Junaid MM
    Nanoscale Res Lett; 2021 Jan; 16(1):16. PubMed ID: 33496852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High Dynamic Micro Vibrator with Integrated Optical Displacement Detector for In-Situ Self-Calibration of MEMS Inertial Sensors.
    Du YJ; Yang TT; Gong DD; Wang YC; Sun XY; Qin F; Dai G
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29954126
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reprogrammable Chemical 3D Shaping for Origami, Kirigami, and Reconfigurable Molding.
    Oyefusi A; Chen J
    Angew Chem Int Ed Engl; 2017 Jul; 56(28):8250-8253. PubMed ID: 28556408
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nano-kirigami with giant optical chirality.
    Liu Z; Du H; Li J; Lu L; Li ZY; Fang NX
    Sci Adv; 2018 Jul; 4(7):eaat4436. PubMed ID: 29984308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Circumferential-scanning endoscopic optical coherence tomography probe based on a circular array of six 2-axis MEMS mirrors.
    Luo S; Wang D; Tang J; Zhou L; Duan C; Wang D; Liu H; Zhu Y; Li G; Zhao H; Wu Y; An X; Li X; Liu Y; Huo L; Xie H
    Biomed Opt Express; 2018 May; 9(5):2104-2114. PubMed ID: 29760973
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deterministic and stochastic control of kirigami topology.
    Chen S; Choi GPT; Mahadevan L
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4511-4517. PubMed ID: 32054786
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Simple and Robust Fabrication Process for SU-8 In-Plane MEMS Structures.
    Ge C; Cretu E
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32197487
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Scanning Micromirror Platform Based on MEMS Technology for Medical Application.
    Pengwang E; Rabenorosoa K; Rakotondrabe M; Andreff N
    Micromachines (Basel); 2016 Feb; 7(2):. PubMed ID: 30407397
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kirigami-Based Highly Stretchable Thin Film Solar Cells That Are Mechanically Stable for More than 1000 Cycles.
    Li H; Wang W; Yang Y; Wang Y; Li P; Huang J; Li J; Lu Y; Li Z; Wang Z; Fan B; Fang J; Song W
    ACS Nano; 2020 Feb; 14(2):1560-1568. PubMed ID: 32023036
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptable Invisibility Management Using Kirigami-Inspired Transformable Metamaterials.
    Xu HX; Wang M; Hu G; Wang S; Wang Y; Wang C; Zeng Y; Li J; Zhang S; Huang W
    Research (Wash D C); 2021; 2021():9806789. PubMed ID: 34604760
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Additive lattice kirigami.
    Castle T; Sussman DM; Tanis M; Kamien RD
    Sci Adv; 2016 Sep; 2(9):e1601258. PubMed ID: 27679822
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent Advances in Flexible RF MEMS.
    Shi Y; Shen Z
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888905
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Research on Actuation Performance of MEMS Safety-and-Arming Device with Interlock Mechanism.
    Hu T; Ren W; Zhao Y; Xue Y
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30678157
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrothermal Microactuators With Peg Drive Improve Performance for Brain Implant Applications.
    Anand S; Sutanto J; Baker MS; Okandan M; Muthuswamy J
    J Microelectromech Syst; 2012 Jul; 21(5):1172-1186. PubMed ID: 24431926
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kirigami-Inspired Structures for Smart Adhesion.
    Hwang DG; Trent K; Bartlett MD
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6747-6754. PubMed ID: 29359914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.