These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32235605)

  • 1. Application of Life-Dependent Material Parameters to Fatigue Life Prediction under Multiaxial and Non-Zero Mean Loading.
    Kluger K; Karolczuk A; Derda S
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32235605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic Tests of Smooth and Notched Specimens Subjected to Bending and Torsion Taking into Account the Effect of Mean Stress.
    Pawliczek R; Rozumek D
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32384608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiaxial fatigue modeling for Nitinol shape memory alloys under in-phase loading.
    Mahtabi MJ; Shamsaei N
    J Mech Behav Biomed Mater; 2015 Mar; 55():236-249. PubMed ID: 26594783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Validity of Selected Criteria of Fatigue Life Prediction.
    Kluger K; Pawliczek R
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31330994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
    Runciman A; Xu D; Pelton AR; Ritchie RO
    Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28792487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue Life of Aluminum Alloys Based on Shear and Hydrostatic Strain.
    Łagoda T; Głowacka K; Kurek A
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Loading Frequency Ratio on Multiaxial Asynchronous Fatigue Failure of 30CrMnSiA Steel.
    Liu T; Qi X; Shi X; Gao L; Zhang T; Zhang J
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaussian Process for Machine Learning-Based Fatigue Life Prediction Model under Multiaxial Stress-Strain Conditions.
    Karolczuk A; Skibicki D; Pejkowski Ł
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of Multiaxial Fatigue Strength Criteria on Specimens from Structural Steel in the High-Cycle Fatigue Region.
    Fojtík F; Papuga J; Fusek M; Halama R
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33383926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue Prediction of Aluminum Alloys Considering Critical Plane Orientation under Complex Stress States.
    Kurek M
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32887343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials.
    Tobajas R; Elduque D; Ibarz E; Javierre C; Gracia L
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32456238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the S-N Curve Mean Stress Correction Model in Terms of Fatigue Life Estimation for Random Torsional Loading for Selected Aluminum Alloys.
    Böhm M; Kluger K; Pochwała S; Kupina M
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel model for low-cycle multiaxial fatigue life prediction based on the critical plane-damage parameter.
    Liu J; Lv X; Wei Y; Pan X; Jin Y; Wang Y
    Sci Prog; 2020; 103(3):36850420936220. PubMed ID: 32757872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Torsional whole-life transformation ratchetting under pure-torsional and non-proportional multiaxial cyclic loadings of NiTi SMA at human-body temperature: Experimental observations and life-prediction model.
    Song D; Kang G; Yu C; Kan Q; Zhang C
    J Mech Behav Biomed Mater; 2019 Jun; 94():267-278. PubMed ID: 30933835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study.
    Fatihhi SJ; Harun MN; Abdul Kadir MR; Abdullah J; Kamarul T; Öchsner A; Syahrom A
    Ann Biomed Eng; 2015 Oct; 43(10):2487-502. PubMed ID: 25828397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A physics-guided modelling method of artificial neural network for multiaxial fatigue life prediction under irregular loading.
    Zhou T; Sun X; Chen X
    Philos Trans A Math Phys Eng Sci; 2023 Nov; 381(2260):20220392. PubMed ID: 37742707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment and Verification of Multiaxis Fatigue Life Prediction Model.
    Fu Z; Li X; Zhang S; Xiong H; Liu C; Li K
    Scanning; 2021; 2021():8875958. PubMed ID: 33623538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters.
    Schäfer BJ; Sonnweber-Ribic P; Ul Hassan H; Hartmaier A
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31487915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.