These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Experimental composable security decoy-state quantum key distribution using time-phase encoding. Yin HL; Liu P; Dai WW; Ci ZH; Gu J; Gao T; Wang QW; Shen ZY Opt Express; 2020 Sep; 28(20):29479-29485. PubMed ID: 33114847 [TBL] [Abstract][Full Text] [Related]
5. Security analysis of quantum key distribution on passive optical networks. Lim K; Ko H; Suh C; Rhee JK Opt Express; 2017 May; 25(10):11894-11909. PubMed ID: 28788747 [TBL] [Abstract][Full Text] [Related]
6. Enhanced BB84 quantum cryptography protocol for secure communication in wireless body sensor networks for medical applications. V AD; V K Pers Ubiquitous Comput; 2023; 27(3):875-885. PubMed ID: 33758585 [TBL] [Abstract][Full Text] [Related]
7. Simple proof of security of the BB84 quantum key distribution protocol. Shor PW; Preskill J Phys Rev Lett; 2000 Jul; 85(2):441-4. PubMed ID: 10991303 [TBL] [Abstract][Full Text] [Related]
8. Quantum man-in-the-middle attack on the calibration process of quantum key distribution. Fei YY; Meng XD; Gao M; Wang H; Ma Z Sci Rep; 2018 Mar; 8(1):4283. PubMed ID: 29523828 [TBL] [Abstract][Full Text] [Related]
9. Randomness determines practical security of BB84 quantum key distribution. Li HW; Yin ZQ; Wang S; Qian YJ; Chen W; Guo GC; Han ZF Sci Rep; 2015 Nov; 5():16200. PubMed ID: 26552359 [TBL] [Abstract][Full Text] [Related]
10. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack. Miroshnichenko GP; Kozubov AV; Gaidash AA; Gleim AV; Horoshko DB Opt Express; 2018 Apr; 26(9):11292-11308. PubMed ID: 29716053 [TBL] [Abstract][Full Text] [Related]
11. Security of quantum key distribution with multiphoton components. Yin HL; Fu Y; Mao Y; Chen ZB Sci Rep; 2016 Jul; 6():29482. PubMed ID: 27383014 [TBL] [Abstract][Full Text] [Related]
12. Secure quantum key distribution with an uncharacterized source. Koashi M; Preskill J Phys Rev Lett; 2003 Feb; 90(5):057902. PubMed ID: 12633399 [TBL] [Abstract][Full Text] [Related]
13. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Gleim AV; Egorov VI; Nazarov YV; Smirnov SV; Chistyakov VV; Bannik OI; Anisimov AA; Kynev SM; Ivanova AE; Collins RJ; Kozlov SA; Buller GS Opt Express; 2016 Feb; 24(3):2619-33. PubMed ID: 26906834 [TBL] [Abstract][Full Text] [Related]
14. Security of six-state quantum key distribution protocol with threshold detectors. Kato G; Tamaki K Sci Rep; 2016 Jul; 6():30044. PubMed ID: 27443610 [TBL] [Abstract][Full Text] [Related]
15. Practical underwater quantum key distribution based on decoy-state BB84 protocol. Dong S; Yu Y; Zheng S; Zhu Q; Gai L; Li W; Gu Y Appl Opt; 2022 May; 61(15):4471-4477. PubMed ID: 36256286 [TBL] [Abstract][Full Text] [Related]
16. State preparation robust to modulation signal degradation by use of a dual parallel modulator for high-speed BB84 quantum key distribution systems. Zhang W; Kadosawa Y; Tomita A; Ogawa K; Okamoto A Opt Express; 2020 Apr; 28(9):13965-13977. PubMed ID: 32403861 [TBL] [Abstract][Full Text] [Related]
17. Enhancing the Security of the BB84 Quantum Key Distribution Protocol against Detector-Blinding Attacks via the Use of an Active Quantum Entropy Source in the Receiving Station. Stipčević M Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998210 [TBL] [Abstract][Full Text] [Related]
18. Detecting a Photon-Number Splitting Attack in Decoy-State Measurement-Device-Independent Quantum Key Distribution via Statistical Hypothesis Testing. Chen X; Chen L; Yan Y Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141118 [TBL] [Abstract][Full Text] [Related]
19. Quantum Key Distribution: Modeling and Simulation through BB84 Protocol Using Python3. Adu-Kyere A; Nigussie E; Isoaho J Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016045 [TBL] [Abstract][Full Text] [Related]