These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32236520)

  • 1. Similarity analysis of stacking sequences in a SiC nanowire pair grown from the same catalyst nanoparticle using Levenshtein distance.
    Kataoka T; Noguchi T; Kohno H
    Microscopy (Oxf); 2020 Jul; 69(4):234-239. PubMed ID: 32236520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing the synchronism of stacking-fault formation in side-by-side SiC nanowire pairs using the Levenshtein distance: stochastic versus deterministic processes.
    Moriuchi F; Kohno H
    Microscopy (Oxf); 2023 Oct; 72(5):395-398. PubMed ID: 36576345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synthesis of twinned silicon carbide nanowires by a catalyst-free pyrolytic deposition technique.
    Li J; Zhu X; Ding P; Chen Y
    Nanotechnology; 2009 Apr; 20(14):145602. PubMed ID: 19420530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of substrate type on SiC nanowire orientation.
    Attolini G; Rossi F; Bosi M; Watts BE; Salviati G
    J Nanosci Nanotechnol; 2011 May; 11(5):4109-13. PubMed ID: 21780413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stacking faults in SiC nanowires.
    Wallis KL; Wieligor M; Zerda TW; Stelmakh S; Gierlotka S; Palosz B
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3504-10. PubMed ID: 19051903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect-Induced Nucleation and Epitaxy: A New Strategy toward the Rational Synthesis of WZ-GaN/3C-SiC Core-Shell Heterostructures.
    Liu B; Yang B; Yuan F; Liu Q; Shi D; Jiang C; Zhang J; Staedler T; Jiang X
    Nano Lett; 2015 Dec; 15(12):7837-46. PubMed ID: 26517395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet-visible light photoluminescence induced by stacking faults in 3C-SiC nanowires.
    Yu H; Wang Q; Yang L; Dai B; Zhu J; Han J
    Nanotechnology; 2019 Jun; 30(23):235601. PubMed ID: 30907378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of stacking faults and the screw dislocation-driven growth: a case study of aluminum nitride nanowires.
    Meng F; Estruga M; Forticaux A; Morin SA; Wu Q; Hu Z; Jin S
    ACS Nano; 2013 Dec; 7(12):11369-78. PubMed ID: 24295225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of bamboo-like 3C-SiC nanowires by microwave assisted carbothermal reduction.
    Lu M; Li A; Wang T; Wang D; Qin W
    J Nanosci Nanotechnol; 2010 Mar; 10(3):2135-8. PubMed ID: 20355641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of SiC/SiO
    Chen BY; Chi CC; Hsu WK; Ouyang H
    Sci Rep; 2021 Jan; 11(1):233. PubMed ID: 33420336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. XPS analysis by exclusion of a-carbon layer on silicon carbide nanowires by a gold catalyst-supported metal-organic chemical vapor deposition method.
    Nam SH; Kim MH; Hyun JS; Kim YD; Boo JH
    J Nanosci Nanotechnol; 2010 Apr; 10(4):2741-5. PubMed ID: 20355494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanowire growth through stacking fault mechanism by oleylamine-mediated synthesis.
    Moraes DA; Souza Junior JB; Ferreira FF; Mogili NVV; Varanda LC
    Nanoscale; 2020 Jul; 12(25):13316-13329. PubMed ID: 32555890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffraction.
    Davtyan A; Lehmann S; Kriegner D; Zamani RR; Dick KA; Bahrami D; Al-Hassan A; Leake SJ; Pietsch U; Holý V
    J Synchrotron Radiat; 2017 Sep; 24(Pt 5):981-990. PubMed ID: 28862620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Transparent and Free-Standing SiC Nanowires Fabric: Stretchable UV Absorber and Fast-Response UV-A Detector.
    Sun B; Sun Y; Wang C
    Small; 2018 Mar; 14(12):e1703391. PubMed ID: 29383845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure characterization of defects in cubic silicon carbide using transmission electron microscopy.
    Chayasombat B; Kimata Y; Tokunaga T; Kuroda K; Sasaki K
    Microsc Microanal; 2013 Aug; 19 Suppl 5():119-22. PubMed ID: 23920188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple route to ultra long SiC nanowires.
    Cai KF; Lei Q; Zhang AX
    J Nanosci Nanotechnol; 2007 Feb; 7(2):580-3. PubMed ID: 17450799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Growth of Stacking Fault Free ⟨100⟩ Nanowires on a Polycrystalline Substrate for Energy Conversion Application.
    Zhang K; Abbas Y; Jan SU; Gao L; Ma Y; Mi Z; Liu X; Xuan Y; Gong JR
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17676-17685. PubMed ID: 32212680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjusting the Morphology and Properties of SiC Nanowires by Catalyst Control.
    Guo C; Cheng L; Ye F; Zhang Q
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33212809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular template assisted growth of ultrathin silicon carbide nanowires with strong green light emission and excellent field-emission properties.
    Xi G; He Y; Wang C
    Chemistry; 2010 May; 16(17):5184-90. PubMed ID: 20309964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance switching in a SiC nanowire/Au nanoparticle network.
    Mori Y; Kohno H
    Nanotechnology; 2009 Jul; 20(28):285705. PubMed ID: 19550009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.