These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 32236768)

  • 1. Engineering a growth-phase-dependent biosynthetic pathway for carotenoid production in Saccharomyces cerevisiae.
    Su B; Song D; Yang F; Zhu H
    J Ind Microbiol Biotechnol; 2020 May; 47(4-5):383-393. PubMed ID: 32236768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y
    Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.
    Ma T; Shi B; Ye Z; Li X; Liu M; Chen Y; Xia J; Nielsen J; Deng Z; Liu T
    Metab Eng; 2019 Mar; 52():134-142. PubMed ID: 30471360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Metabolic Engineering of
    Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T
    J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae.
    Huang G; Li J; Lin J; Duan C; Yan G
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38621758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Construction of Saccharomyces cerevisiae cell factories for lycopene production].
    Shi MY; Liu Yi ; Wang D; Lu FP; Huang LQ; Dai ZB; Zhang XL
    Zhongguo Zhong Yao Za Zhi; 2014 Oct; 39(20):3978-85. PubMed ID: 25751950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae.
    Xie W; Ye L; Lv X; Xu H; Yu H
    Metab Eng; 2015 Mar; 28():8-18. PubMed ID: 25475893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering a Balanced Acetyl Coenzyme A Metabolism in
    Su B; Lai P; Yang F; Li A; Deng MR; Zhu H
    J Agric Food Chem; 2022 Apr; 70(13):4019-4029. PubMed ID: 35319878
    [No Abstract]   [Full Text] [Related]  

  • 9. [Construction of a highly efficient synthetic lycopene engineered Saccharomyces cerevisiae].
    Sun L; Wang J; Jiang W; Li Y; Zhang L; Ding Z; Gu Z; Shi G; Xu S
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1334-1345. PubMed ID: 32748591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux.
    Kang W; Ma T; Liu M; Qu J; Liu Z; Zhang H; Shi B; Fu S; Ma J; Lai LTF; He S; Qu J; Wing-Ngor Au S; Ho Kang B; Yu Lau WC; Deng Z; Xia J; Liu T
    Nat Commun; 2019 Sep; 10(1):4248. PubMed ID: 31534134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering.
    Xie W; Lv X; Ye L; Zhou P; Yu H
    Metab Eng; 2015 Jul; 30():69-78. PubMed ID: 25959020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production.
    Hong J; Park SH; Kim S; Kim SW; Hahn JS
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):211-223. PubMed ID: 30343427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Evolution and Metabolic Engineering Boost Lycopene Production in
    Zhou K; Yu C; Liang N; Xiao W; Wang Y; Yao M; Yuan Y
    J Agric Food Chem; 2023 Mar; 71(8):3821-3831. PubMed ID: 36802623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae.
    Yamano S; Ishii T; Nakagawa M; Ikenaga H; Misawa N
    Biosci Biotechnol Biochem; 1994 Jun; 58(6):1112-4. PubMed ID: 7765036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotechnological production of lycopene by microorganisms.
    Li L; Liu Z; Jiang H; Mao X
    Appl Microbiol Biotechnol; 2020 Dec; 104(24):10307-10324. PubMed ID: 33097966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae.
    Zhu P; Luo R; Li Y; Chen X
    Microbiol Spectr; 2022 Dec; 10(6):e0227722. PubMed ID: 36354322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upstream Activation Sequence Can Function as an Insulator for Chromosomal Regulation of Heterologous Pathways Against Position Effects in Saccharomyces cerevisiae.
    Su B; Yang F; Li A; Deng MR; Zhu H
    Appl Biochem Biotechnol; 2022 Apr; 194(4):1841-1849. PubMed ID: 35000122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae.
    Chai F; Wang Y; Mei X; Yao M; Chen Y; Liu H; Xiao W; Yuan Y
    Microb Cell Fact; 2017 Mar; 16(1):54. PubMed ID: 28356104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway engineering of Saccharomyces cerevisiae for efficient lycopene production.
    Xu X; Liu J; Lu Y; Lan H; Tian L; Zhang Z; Xie C; Jiang L
    Bioprocess Biosyst Eng; 2021 Jun; 44(6):1033-1047. PubMed ID: 33486569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch.
    Zhou P; Xie W; Yao Z; Zhu Y; Ye L; Yu H
    Biotechnol Bioeng; 2018 May; 115(5):1321-1330. PubMed ID: 29315481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.